Um índice múltiplo n-dimensional é uma n-tupla da forma
α
=
(
α
1
,
α
2
,
…
,
α
n
)
{\displaystyle \alpha =(\alpha _{1},\alpha _{2},\ldots ,\alpha _{n})}
de inteiros não negativos. Para índices múltiplos
α
,
β
∈
N
0
n
{\displaystyle \alpha ,\beta \in \mathbb {N} _{0}^{n}}
e
x
=
(
x
1
,
x
2
,
…
,
x
n
)
∈
R
n
{\displaystyle x=(x_{1},x_{2},\ldots ,x_{n})\in \mathbb {R} ^{n}}
se define:
α
±
β
=
(
α
1
±
β
1
,
α
2
±
β
2
,
…
,
α
n
±
β
n
)
{\displaystyle \alpha \pm \beta =(\alpha _{1}\pm \beta _{1},\,\alpha _{2}\pm \beta _{2},\ldots ,\,\alpha _{n}\pm \beta _{n})}
α
≤
β
⇔
α
i
≤
β
i
∀
i
∈
{
1
,
…
,
n
}
{\displaystyle \alpha \leq \beta \quad \Leftrightarrow \quad \alpha _{i}\leq \beta _{i}\quad \forall \,i\in \{1,\ldots ,n\}}
|
α
|
=
α
1
+
α
2
+
⋯
+
α
n
{\displaystyle |\alpha |=\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}}
α
!
=
α
1
!
⋅
α
2
!
⋯
α
n
!
{\displaystyle \alpha !=\alpha _{1}!\cdot \alpha _{2}!\cdots \alpha _{n}!}
(
α
β
)
=
(
α
1
β
1
)
(
α
2
β
2
)
⋯
(
α
n
β
n
)
=
α
!
β
!
(
α
−
β
)
!
{\displaystyle {\binom {\alpha }{\beta }}={\binom {\alpha _{1}}{\beta _{1}}}{\binom {\alpha _{2}}{\beta _{2}}}\cdots {\binom {\alpha _{n}}{\beta _{n}}}={\frac {\alpha !}{\beta !(\alpha -\beta )!}}}
(
k
α
)
=
k
!
α
1
!
α
2
!
⋯
α
n
!
=
k
!
α
!
{\displaystyle {\binom {k}{\alpha }}={\frac {k!}{\alpha _{1}!\alpha _{2}!\cdots \alpha _{n}!}}={\frac {k!}{\alpha !}}}
onde
|
α
|
=
k
{\displaystyle |\alpha |=k\,}
x
α
=
x
1
α
1
x
2
α
2
…
x
n
α
n
{\displaystyle x^{\alpha }=x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\ldots x_{n}^{\alpha _{n}}}
∂
α
=
∂
1
α
1
∂
2
α
2
…
∂
n
α
n
{\displaystyle \partial ^{\alpha }=\partial _{1}^{\alpha _{1}}\partial _{2}^{\alpha _{2}}\ldots \partial _{n}^{\alpha _{n}}}
onde
∂
i
α
i
:=
∂
α
i
/
∂
x
i
α
i
{\displaystyle \partial _{i}^{\alpha _{i}}:=\partial ^{\alpha _{i}}/\partial x_{i}^{\alpha _{i}}}
Referências
↑ Xavier, Saint Raymond (1991). Elementary Introduction to the Theory of Pseudodifferential Operators (em inglês). [S.l.]: CRC Press. ISBN 0-8493-7158-9