Neste caso, n = 10 e ω = 2π rd/s. Assim, fmax = 1 Hz e a condição
t
a
<
1
2
f
m
a
x
{\displaystyle t_{a}<{\frac {1}{2f_{max}}}}
foi satisfeita. Q(k) será a sequência
Q
(
k
)
=
{
p
k
}
|
p
k
=
c
o
s
(
2
π
k
⋅
t
a
)
,
k
=
{
0
,
1
,
2...9
}
{\displaystyle Q(k)\;=\;\{p_{k}\}\;|\;p_{k}\;=\;cos(2\pi k\cdot t_{a}),\;k\;=\;\{0,1,2...9\}}
Q
(
k
)
=
{
p
k
}
|
p
k
=
c
o
s
(
0.4
⋅
π
k
)
,
k
=
{
0
,
1
,
2...9
}
{\displaystyle Q(k)\;=\;\{p_{k}\}\;|\;p_{k}\;=\;cos(0.4\cdot \pi k),\;k\;=\;\{0,1,2...9\}}
Q(k) = {1.00, 0.309, -0.809, -0.809, 0.309, 1.00, 0.309, -0.809, -0.809, 0.309}.
Cálculo através da convolução
editar
Vamos obter a DHT primeiro através da expressão da convolução. Para isso, calcula-se a matriz H-1 (k-j) e depois o produto matricial H-1 (k-j) · Q(j)
H
−
1
(
k
−
j
)
=
[
p
k
,
j
]
|
p
k
,
j
=
−
2
n
⋅
s
i
n
2
(
π
2
(
k
j
)
)
⋅
c
o
t
(
π
n
(
k
−
j
)
)
,
k
,
j
=
{
0
,
1
,
2...9
}
{\displaystyle H^{-1}(k-j)\;=\;[p_{k,j}]\;|\;p_{k,j}\;=\;-\;{\frac {2}{n}}\cdot sin^{2}\left({\frac {\pi }{2}}\;(k\;\;j)\right)\cdot cot\left({\frac {\pi }{n}}\;(k\;-\;j)\right),\;k,j\;=\;\{0,1,2...9\}}
H
−
1
(
k
−
j
)
=
[
0.000
0.616
0.000
0.145
0.000
0.000
0.000
−
0.145
0.000
−
0.616
−
0.616
0.000
0.616
0.000
0.145
0.000
0.000
0.000
−
0.145
0.000
0.000
−
0.616
0.000
0.616
0.000
0.145
0.000
0.000
0.000
−
0.145
−
0.145
0.000
−
0.616
0.000
0.616
0.000
0.145
0.000
0.000
0.000
0.000
−
0.145
0.000
−
0.616
0.000
0.616
0.000
0.145
0.000
0.000
0.000
0.000
−
0.145
0.000
−
0.616
0.000
0.616
0.000
0.145
0.000
0.000
0.000
0.000
−
0.145
0.000
−
0.616
0.000
0.616
0.000
0.145
0.145
0.000
0.000
0.000
−
0.145
0.000
−
0.616
0.000
0.616
0.000
0.000
0.145
0.000
0.000
0.000
−
0.145
0.000
−
0.616
0.000
0.616
0.616
0.000
0.145
0.000
0.000
0.000
−
0.145
0.000
−
0.616
0.000
]
{\displaystyle H^{-1}(k-j)\;=\;{\begin{bmatrix}0.000&0.616&0.000&0.145&0.000&0.000&0.000&-0.145&0.000&-0.616\\-0.616&0.000&0.616&0.000&0.145&0.000&0.000&0.000&-0.145&0.000\\0.000&-0.616&0.000&0.616&0.000&0.145&0.000&0.000&0.000&-0.145\\-0.145&0.000&-0.616&0.000&0.616&0.000&0.145&0.000&0.000&0.000\\0.000&-0.145&0.000&-0.616&0.000&0.616&0.000&0.145&0.000&0.000\\0.000&0.000&-0.145&0.000&-0.616&0.000&0.616&0.000&0.145&0.000\\0.000&0.000&0.000&-0.145&0.000&-0.616&0.000&0.616&0.000&0.145\\0.145&0.000&0.000&0.000&-0.145&0.000&-0.616&0.000&0.616&0.000\\0.000&0.145&0.000&0.000&0.000&-0.145&0.000&-0.616&0.000&0.616\\0.616&0.000&0.145&0.000&0.000&0.000&-0.145&0.000&-0.616&0.000\\\end{bmatrix}}}
H
−
1
(
k
−
j
)
⋅
Q
(
j
)
=
[
0.000
0.190
0.000
−
0.118
0.000
0.000
0.000
0.118
0.000
−
0.190
−
0.616
0.000
−
0.498
0.000
0.045
0.000
0.000
0.000
0.118
0
,
000
0.000
−
0.190
0.000
−
0.498
0.000
0.145
0.000
0.000
0.000
−
0.045
−
0.145
0.000
0.498
0.000
0.190
0.000
0.045
0.000
0.000
0.000
0.000
−
0.045
0.000
0.498
0.000
0.616
0.000
−
0.118
0.000
0.000
0.000
0.000
0.118
0.000
−
0.190
0.000
0.190
0.000
−
0.118
0.000
0.000
0.000
0.000
0.118
0.000
−
0.616
0.000
−
0.498
0.000
0.045
0.145
0.000
0.000
0.000
−
0.045
0.000
−
0.190
0.000
−
0.498
0.000
0.000
0.045
0.000
0.000
0.000
−
0.145
0.000
0.498
0.000
0.190
0.616
0.000
−
0.118
0.000
0.000
0.000
−
0.045
0.000
0.498
0.000
]
{\displaystyle H^{-1}(k-j)\cdot Q(j)\;=\;{\begin{bmatrix}0.000&0.190&0.000&-0.118&0.000&0.000&0.000&0.118&0.000&-0.190\\-0.616&0.000&-0.498&0.000&0.045&0.000&0.000&0.000&0.118&0,000\\0.000&-0.190&0.000&-0.498&0.000&0.145&0.000&0.000&0.000&-0.045\\-0.145&0.000&0.498&0.000&0.190&0.000&0.045&0.000&0.000&0.000\\0.000&-0.045&0.000&0.498&0.000&0.616&0.000&-0.118&0.000&0.000\\0.000&0.000&0.118&0.000&-0.190&0.000&0.190&0.000&-0.118&0.000\\0.000&0.000&0.000&0.118&0.000&-0.616&0.000&-0.498&0.000&0.045\\0.145&0.000&0.000&0.000&-0.045&0.000&-0.190&0.000&-0.498&0.000\\0.000&0.045&0.000&0.000&0.000&-0.145&0.000&0.498&0.000&0.190\\0.616&0.000&-0.118&0.000&0.000&0.000&-0.045&0.000&0.498&0.000\\\end{bmatrix}}}
D
H
T
(
k
)
=
{
p
k
}
|
p
k
=
∑
j
=
0
9
[
H
−
1
(
k
−
j
)
⋅
Q
(
j
)
]
k
,
j
=
{
0
,
1
,
2...9
}
{\displaystyle DHT(k)\;=\;\{p_{k}\}\;|\;p_{k}\;=\;\sum _{j\;=\;0}^{9}\left[H^{-1}(k\;-\;j)\cdot Q(j)\right]\;k,j\;=\;\{0,1,2...9\}}
DHT(k) = {0, -0.951, -0.588, 0.588, 0.951, 0, -0.951, -0.588, 0.588, 0,951}.
Vamos obter a DHT agora através da transformada discreta de Fourier. H(k) será dada por
H
(
k
)
=
{
p
k
}
|
p
k
=
i
⋅
s
g
n
(
n
2
−
k
)
⋅
s
g
n
(
k
)
,
k
=
{
0
,
1
,
2...9
}
{\displaystyle H(k)\;=\;\{p_{k}\}\;|\;p_{k}\;=\;i\cdot sgn\left({\frac {n}{2}}\;-\;k\right)\cdot sgn(k),\;k\;=\;\{0,1,2...9\}}
H(k) = {0, i, i, i, i, 0, -i, -i, -i, -i}. Os coeficientes da DFT e da DFT-1 > são dados, por definição (ver Transformada de Fourier , por
D
F
T
{
F
(
k
)
}
=
∑
j
=
0
n
−
1
[
F
[
j
]
⋅
e
−
i
2
π
n
j
k
]
{\displaystyle DFT\{F(k)\}\;=\;\sum _{j\;=\;0}^{n\;-\;1}\left[F[j]\cdot e^{-i\;{\frac {2\pi }{n}}\;jk}\right]}
e
D
F
T
−
1
{
F
(
k
)
}
=
1
n
⋅
∑
j
=
0
n
−
1
[
F
[
j
]
⋅
e
i
2
π
n
j
k
]
{\displaystyle DFT^{-1}\{F(k)\}\;=\;{\frac {1}{n}}\cdot \sum _{j\;=\;0}^{n\;-\;1}\left[F[j]\cdot e^{i\;{\frac {2\pi }{n}}\;jk}\right]}
Assim,
D
F
T
{
Q
(
k
)
}
=
∑
j
=
0
n
−
1
[
Q
[
j
]
⋅
e
−
i
2
π
n
j
k
]
=
∑
j
=
0
9
[
c
o
s
(
0.4
⋅
π
j
)
⋅
e
−
0.2
⋅
i
π
j
k
]
{\displaystyle DFT\{Q(k)\}\;=\;\sum _{j\;=\;0}^{n\;-\;1}\left[Q[j]\cdot e^{-i\;{\frac {2\pi }{n}}\;jk}\right]\;=\;\sum _{j\;=\;0}^{9}\left[cos(0.4\cdot \pi j)\cdot e^{-\;0.2\cdot i\pi jk}\right]}
D
F
T
{
Q
(
k
)
}
=
∑
j
=
0
9
[
c
o
s
(
0.4
⋅
π
j
)
⋅
(
c
o
s
(
−
0.2
⋅
π
j
k
)
+
i
s
i
n
(
−
0.2
⋅
π
j
k
)
)
]
{\displaystyle DFT\{Q(k)\}\;=\;\sum _{j\;=\;0}^{9}\left[cos(0.4\cdot \pi j)\cdot \left(cos(-0.2\cdot \pi jk)\;+\;i\;sin(-0.2\cdot \pi jk)\right)\right]}
DFT(k) = {0, 0, 5, 0, 0, 0, 0, 0, 5, 0}. Multiplicando-se por H(k), obtemos F(k) = {0, 0, 5i, 0, 0, 0, 0, 0, -5i, 0}. Assim,
D
H
T
(
k
)
=
D
F
T
−
1
{
H
(
k
)
⋅
D
F
T
(
k
)
}
=
D
F
T
−
1
{
F
(
k
)
}
=
1
n
⋅
∑
j
=
0
n
−
1
[
F
[
j
]
⋅
e
i
2
π
n
j
k
]
{\displaystyle DHT(k)\;=\;DFT^{-1}\{H(k)\cdot DFT(k)\}\;=\;DFT^{-1}\{F(k)\}\;=\;{\frac {1}{n}}\cdot \sum _{j\;=\;0}^{n\;-\;1}\left[F[j]\cdot e^{i\;{\frac {2\pi }{n}}\;jk}\right]}
D
H
T
(
k
)
=
1
n
⋅
∑
j
=
0
n
−
1
[
F
[
j
]
(
c
o
s
(
−
0.2
⋅
π
j
k
)
+
i
s
i
n
(
−
0.2
⋅
π
j
k
)
)
]
{\displaystyle DHT(k)\;=\;{\frac {1}{n}}\cdot \sum _{j\;=\;0}^{n\;-\;1}\left[F[j]\left(cos(-0.2\cdot \pi jk)\;+\;i\;sin(-0.2\cdot \pi jk)\right)\right]}
DHT(k) = {0, -0.951, -0.588, 0.588, 0.951, 0, -0.951, -0.588, 0.588, 0,951}.
Uma vez que a transformada de Hilbert û(t) em forma fechada é conhecida, pode-se amostrá-la a intervalos ta de maneira a obter os coeficientes exatos de DHT.
D
H
T
(
k
)
=
{
p
k
}
|
p
k
=
u
^
(
k
⋅
t
a
)
,
k
=
{
0
,
1
,
2...9
}
{\displaystyle DHT(k)\;=\;\{p_{k}\}\;|\;p_{k}\;=\;{\hat {u}}(k\cdot t_{a}),\;k\;=\;\{0,1,2...9\}}
D
H
T
(
k
)
=
{
p
k
}
|
p
k
=
−
s
i
n
(
2
π
k
⋅
t
a
)
,
k
=
{
0
,
1
,
2...9
}
{\displaystyle DHT(k)\;=\;\{p_{k}\}\;|\;p_{k}\;=\;-\;sin(2\pi k\cdot t_{a}),\;k\;=\;\{0,1,2...9\}}
DHT(k) = {0, -0.951, -0.588, 0.588, 0.951, 0, -0.951, -0.588, 0.588, 0,951}. O resultado é exato, devido à alta frequência de amostragem utilizada.