Equação de difusão

A equação da difusão é uma equação em derivadas parciais que descreve flutuações de densidade em um material que se difunde. É também usada para descrever processos exibindo um comportamento de difusão.

Equação

editar

A equação é geralmente escrita como:[1]

  .

Nesta expressão   é a densidade do material que difunde,   é o tempo, e   é o coeficiente de difusão coletivo,   é a coordenada espacial e o símbolo nabla (∇) representa o vetor operador diferencial del. Se o coeficiente de difusão depende da densidade, então a equação não é linear; de outra maneira seria linear. Se D é constante, então a equação se reduz à seguinte equação linear:

  .

Mais geralmente, quando D é uma matriz simétrico definida positiva, a equação descreve uma difusão anisótrica.

Dedução

editar

A equação de difusão pode ser deduzida a partir da equação de continuidade. A mesma expressa que uma alteração na densidade em um sistema é devido a um fluxo em entrada ou a um fluxo em saída de material do sistema. Ou seja, não pode haver nem criação nem destruição de matéria.

  .

Nesta expressão   é o fluxo de material que difunde. A equação de difusão pode ser obtida facilmente desta relação quando é combinada com a Lei de Fick, que assume que o fluxo do material que difunde em qualquer parte do sistema é proporcional ao gradiente local de densidade:

 .

Ver também

editar

Referências

  1. «Diffusion equation» (em inglês). Encyclopedia of Mathematics. Consultado em 15 de agosto de 2020 

Ligações externas

editar
  Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.