Em topologia diferencial, um fibrado vetorial é um espaço topológico que é uma associação de um espaço vetorial a cada ponto de outro espaço topológico (mais simples), satisfazendo determinadas propriedades que ligam a estrutura dos espaços topológicos aos espaços vetoriais.

Ao espaço topológico mais simples chama-se base, a cada espaço vectorial uma fibra e à união de todas as fibras o espaço total do fibrado.

Essencialmente, a propriedade para ligar a base às fibras é que, localmente, o fibrado vectorial seja muito parecido com um cilindro, ou seja, para cada ponto x do espaço topológico exista uma vizinhança U de x no espaço topológico tal que U x o espaço vetorial seja homeomorfo a um aberto do fibrado.

Definição

editar

Um fibrado vectorial se caracteriza por:

  • Um espaço topológico E (chamado espaço total, por abuso de linguagem, às vezes chamado de o próprio fibrado vetorial)
  • Um espaço topológico X (chamado de base)
  • Uma projeção contínua  
  • Para todo  , uma estrutura de espaço vetorial em  

Satisfazendo o axioma:

  • Para todo  , existe uma vizinhança U de x, um número natural k e um homeomorfismo   em que:
    •   para todo vetor v de  
    • a função   é um isomorfismo entre os espaços vetoriais   e  

Exemplos

editar
  • Se E é um espaço vetorial e X é um espaço topológico, então o produto E×X é um fibrado vetorial sobre X.
  • O fibrado tangente de uma variedade diferenciável é um fibrado vetorial sobre essa variedade.
 
O Commons possui uma categoria com imagens e outros ficheiros sobre Fibrado vetorial
  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.