Para usar esta imagem numa página da Wikipédia inserir: [[Imagem:Al Khwarizmi numerais.PNG|thumb|180px|Legenda]]
Descrição do ficheiro
DescriçãoAl Khwarizmi numerais.PNG
Esta figura explana a “Nova teoria da raiz gráfica dos modernos numerais europeus”. Cada numeral que usamos atualmente deveria ser lido como um ideograma numérico. Hipoteticamente os numerais foram grafados e definidos usando aritmética simples: a) O numeral 1 (um), 2 (dois), 3 (três), 4 (quatro) foram baseados em ângulos aditivos. b) Os numerais 5 (cinco), 6 (seis), 7 (sete), 8 (oito), 9 (nove), o (dez) foram definidos usando os conhecimentos acerca das notações manuscritas dos ábacos. Neste caso foi usado um pequeno e especial ábaco que tinha apenas seis contas de base cinco-dez de modo semelhante à mão humana.
This figure explains a “New Theory on the Graphical Roots of the Modern European Numbers”. Each number we use today should be read as a numeric ideogram and the numbers were defined using simple arithmetic: a) The numbers 1 (one), 2 (two), 3 (three) and 4 (four), were based on additives angles. b) The numbers 5 (five), 6 (six), 7 (seven), 8 (eight), 9 (nine), and o (ten) were defined using the knowledge about the abacus manuscript notations. The especial abacus used had a base-five/ten like the human hands.
Eu, titular dos direitos de autor desta obra, publico-a com as seguintes licenças:
É concedida permissão para copiar, distribuir e/ou modificar este documento nos termos da Licença de Documentação Livre GNU, versão 1.2 ou qualquer versão posterior publicada pela Free Software Foundation; sem Secções Invariantes, sem textos de Capa e sem textos de Contra-Capa. É incluída uma cópia da licença na secção intitulada GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
partilhar – copiar, distribuir e transmitir a obra
recombinar – criar obras derivadas
De acordo com as seguintes condições:
atribuição – Tem de fazer a devida atribuição da autoria, fornecer uma hiperligação para a licença e indicar se foram feitas alterações. Pode fazê-lo de qualquer forma razoável, mas não de forma a sugerir que o licenciador o apoia ou subscreve o seu uso da obra.
partilha nos termos da mesma licença – Se remisturar, transformar ou ampliar o conteúdo, tem de distribuir as suas contribuições com a mesma licença ou uma licença compatível com a original.
{{Information |Description=Esta figura explana a “Nova teoria da raiz gráfica dos modernos numerais europeus”. Cada numeral que usamos atualmente deveria ser lido como um ideograma numérico. Hipoteticamente os numerais foram grafados e definidos usa