Para usar esta imagem numa página da Wikipédia inserir: [[Imagem:Restricted Three-Body Problem - Energy Potential Analysis.png|thumb|180px|Legenda]]
Esta imagem (ou todas as imagens neste artigo ou categoria) deveriam ser recriadas usando gráficos vectoriais, como ficheiros SVG. Isto tem várias vantagens; veja as Commons:Media for cleanup|imagens para rever para mais informações. Se já criou um ficheiro SVG desta imagem, por favor, carregue-o. Depois do novo ficheiro SVG ter sido carregado, substitua aqui esta predefinição pela predefinição {{vector version available|nome da nova imagem.svg}}.
Descrição do ficheiro
DescriçãoRestricted Three-Body Problem - Energy Potential Analysis.png
English: Energy potential analysis of the restricted three-body problem. The first equation shows that the total potential (Utot) is a combination of the gravitational potential of the two primary bodies along with the centrifugal effect of the rotating reference frame (which is an inertial effect of the third body in a non-rotating frame). This relationship can be manipulated into the second equation, which more clearly shows the centrifugal component to be of paraboloid geometry, as illustrated in the bottom-middle graph. The final resulting surface has Lagrange points located where the gradient is zero, as indicated by the blue lines on the final graph.
Note 1: Half of the field has been cut away for clarity. Also, the mass parameter (mu) being graphed is 0.25. This is a significant difference from the Earth-Moon system, so the labels are only qualitatively representative. There are also Coriolis effects which are dynamic and not shown.
Many science museums have "gravity well" demonstrations. A similar display can be created for three-body orbits by using a 3-d printer to make the combined gravity potential surface, and then rotating it at a scaled rate. A steel ball bearing could then be placed at the stable L4 or L5 locations (equilateral to the primary masses) and if the model is properly constructed then these ball bearings will stay in place (until air resistance drags them away). The centrifugal and Coriolis effects are simply manifestations of inertial effects when observed from the rotating reference frame.
Note 2: Because the rotation rate of the primary masses is a function of gravity, it should be understood that the labeling of factors as being due to "gravity" and due to "rotation" does not mean that the latter has nothing to do with the former. This should be clear upon inspection of both equations. If these labels were not distilled down to a single word for the sake of simplicity, the long-hand labels could be: "potential due to the force due to gravity" (gravity) and "potential due to the force due to the rotation due to the force due to gravity" (rotation).
Graphics generated by HiQ. PDF image edited with GIMP and MS Paint.
A pessoa que associou uma obra a este documento dedicou-a ao domínio público, renunciando a todos os seus direitos sobre a obra em todo o mundo ao abrigo da legislação de direitos de autor, incluindo a todos os direitos legais conexos, na medida permitida por lei. Pode copiar, modificar, distribuir e executar a obra, até com fins comerciais, sem pedir autorização.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse
Legendas
Adicione uma explicação de uma linha do que este ficheiro representa
{{Information |Description ={{en|1=Energy potential analysis of the restricted three-body problem. The first equation shows that the total potential is a combination of the gravitational potential of the two primary bodies along with the centrifuga...
Este ficheiro contém informação adicional, provavelmente adicionada a partir da câmara digital ou scanner utilizada para criar ou digitalizar a imagem. Caso o ficheiro tenha sido modificado a partir do seu estado original, alguns detalhes poderão não refletir completamente as mudanças efetuadas.