Ficheiro:SpaceBattle.png

SpaceBattle.png (306 × 301 píxeis, tamanho: 12 kB, tipo MIME: image/png)

Descrição do ficheiro

Descrição
English: A starfleet battle-cruiser drops out of hyperspace in the orbital plane of a ringworld, traveling at 1 ly/ty radially away from the ringworld's star. An enemy cruiser drops out of hyperspace nearby at the same time, traveling 1 ly/ty in the rotation-direction of the ringworld's orbit, and in a direction perpendicular to the starfleet cruiser's radial-trajectory . What is the proper-velocity (magnitude and direction) of the enemy cruiser relative to the starfleet ship?
Data
Origem Obra do próprio
Autor P. Fraundorf
Outras versões
Esta imagem de physics (ou todas as imagens neste artigo ou categoria) deveriam ser recriadas usando gráficos vectoriais, como ficheiros SVG. Isto tem várias vantagens; veja as Commons:Media for cleanup|imagens para rever para mais informações. Se já criou um ficheiro SVG desta imagem, por favor, carregue-o. Depois do novo ficheiro SVG ter sido carregado, substitua aqui esta predefinição pela predefinição {{vector version available|nome da nova imagem.svg}}.

Added information

Adding unit proper-velocities.

As pointed out here[1], local momenta per unit mass or proper-velocities w ≡ dx/dτ add as 3-vectors (in analogy to the classical expression vAC = vAB+vBC), provided that we re-scale/direct the "out-of-frame" component wAB and time-dilate wBC according to:

where the first term is the non-proper "shared clock but not metric" velocity:

while the second term is the non-proper "shared metric but not clock" velocity:

.

One consequence of this is that wCA (which uses A's rather than C's definition of simultaneity) will have the same magnitude as, but a different direction than, wAC. Because the gamma factors are always greater than one, it is easy to see from the equation that the proper-velocity sum direction will be "Thomas-precessed" from wAB+wBC toward the direction of the intermediate frame's proper-velocity wBC.

Note that we've now corrected the figure (and equations above) for a "Thomas-precession" rotation error in the solution above. A correction to the code listed below is also in the works. Unitsphere (discussão) 18:06, 20 July 2017 (UTC)
(2+1)D space chase.

Coordinate-velocity 3-vectors do not similarly add. Also of course proper-velocity is proportional to momentum in the map-frame, while both proper-time (and proper-acceleration as needed in this context) are frame invariants.

This makes 3-vector velocities and accelerations much more useful at high-speeds in the traveler-kinematic[2] (using proper-time τ, proper-velocity w ≡ dx/dτ and proper-acceleration α) than in the Galilean-kinematic[3] (using map-time t, coordinate-velocity v ≡ dx/dt and coordinate-acceleration a ≡ dv/dt).

Aside: Note that the orbiting ringworld depicted above is more like those in Bungie corporation's Halo universe, than the immense concentric structure described in Larry Niven's ringworld universe.

A challenging follow-on to this might be to ask how long it would take to catch up to and dock with the enemy, assuming that its speed and direction are fixed, while your ship is capable of 1-gee acceleration. Any volunteers?

Code

Some useful Mathematica 8.0 declarations for use with two or three-vector arguments, regardless of the speeds and directions involved, include:

gammaw[w_] := Sqrt[1 + w.w]

wABbyCn[wAB_, wBC_] := wAB + (gammaw[wBC] - 1) wAB.wBC/wBC.wBC wBC
wBCbyCn[wAB_, wBC_] := gammaw[wAB] wBC
wACbyCn[wAB_, wBC_] := wABbyCn[wAB, wBC] + wBCbyCn[wAB, wBC]

Here we set up the problem by specifying (in lightspeed units) the proper-velocity vectors of the starfleet battle-cruiser B with respect to the ring (R), and of the enemy battle-cruiser (E) with respect to the ring. Finally, we specify the xy coordinates of the ring relative to its own star in the diagram:

wBR = {0, 1}; wER = {1, 0}; halo = {0, 1.2};

Answers:

enemyProperSpeedEB = Norm[wACbyCn[wER, -wBR]]

This yields wEB = Sqrt[3] in units of ly/ty.

enemyDirectionEB = 
ArcTan[wACbyCn[wER, -wBR]1, wACbyCn[wER, -wBR]2]*180./Pi

This puts the angle at -54.7356 degrees.

The plot is might be made by the following command:

Graphics[
 {
  Darker[Yellow], Circle[{0, 0}, .1],
  Purple, Circle[halo, {.015, .03}],
  Black,
  Arrow[{halo, halo + wBR}],
  Text["bship wBR", halo + wBR/2, {0, -1}, -wBR],
  Red,
  Text["enemy wER", halo + wER/2, {0, -1}, wER],
  Arrow[{halo, halo + wER}],
  Blue,
  Arrow[{halo, halo + wACbyCn[wER, -wBR]}],
  Text["enemy wEB", 
   halo + wACbyCn[wER, -wBR]/2, {0, -1}, {wACbyCn[wER, -wBR][[1]], 
    wACbyCn[wER, -wBR][[2]]}],
  Darker[Green],
  Arrow[{halo(*+wABbyCn[wER,-wBR]*), 
    halo(*+wABbyCn[wER,-wBR]*)- wBR}], 
  Text["ring wRB", halo(*+wABbyCn[wER,-wBR]*)- wBR/2, {0, 1}, -wBR],
  Gray,
  Dashed, 
  Line[{halo, halo + wABwithBtoC, halo + wAC, halo + wBCwithBtoA, 
    halo}],
  Darker[Cyan],
  Arrow[{halo + wABbyCn[wER, -wBR], 
    halo + wBCbyCn[wER, -wBR] + wABbyCn[wER, -wBR]}],
  Text["ring (wRB)R\[Rule]E", 
   halo + wABbyCn[wER, -wBR] + wBCbyCn[wER, -wBR]/2, {0, -1}, 
   wBCbyCn[wER, -wBR]],
  Darker[Orange],
  Arrow[{halo, halo + wABbyCn[wER, -wBR]}],
  Text["enemy (wER)R\[Rule]B", halo + wABbyCn[wER, -wBR]/2, {0, 1}, 
   wABbyCn[wER, -wBR]],
  Black, Dotted,
  Circle[{0, 0}, Norm[halo]],
  Text["Find wEB from wER and wRB", labelHigh(*{.9,3.0}*)],
  Text["B = starfleet battleship", labelHigh - {0, 0.2}],
  Red, Text["E = enemy cruiser", labelHigh - {0, 0.4}],
  Purple, Text["R = ring world", labelHigh - {0, 0.6}]
  },
 PlotRange -> pRange(*{{-1,2},{-.5,2.5}}*),
 BaseStyle -> {FontFamily -> "Courier", FontSize -> 12}
 ]

Footnotes

  1. P. Fraundorf (2016/2017) Traveler-point dynamics, hal-01503971 working draft on-line discussion.
  2. P. Fraundorf (2012) "A traveler-centered intro to kinematics", arxiv:1206.2877 [physics.pop-ph].
  3. Anthony P. French (1968) Special relativity (W. W. Norton, NY) page 154: "...acceleration is a quantity of limited and questionable value in special relativity."

Licenciamento

Eu, titular dos direitos de autor desta obra, publico-a com a seguinte licença:
w:pt:Creative Commons
atribuição partilha nos termos da mesma licença
A utilização deste ficheiro é regulada nos termos da licença Creative Commons - Atribuição-CompartilhaIgual 3.0 Não Adaptada.
Pode:
  • partilhar – copiar, distribuir e transmitir a obra
  • recombinar – criar obras derivadas
De acordo com as seguintes condições:
  • atribuição – Tem de fazer a devida atribuição da autoria, fornecer uma hiperligação para a licença e indicar se foram feitas alterações. Pode fazê-lo de qualquer forma razoável, mas não de forma a sugerir que o licenciador o apoia ou subscreve o seu uso da obra.
  • partilha nos termos da mesma licença – Se remisturar, transformar ou ampliar o conteúdo, tem de distribuir as suas contribuições com a mesma licença ou uma licença compatível com a original.

Legendas

Adicione uma explicação de uma linha do que este ficheiro representa

Elementos retratados neste ficheiro

retrata

Histórico do ficheiro

Clique uma data e hora para ver o ficheiro tal como ele se encontrava nessa altura.

Data e horaMiniaturaDimensõesUtilizadorComentário
atual18h03min de 20 de julho de 2017Miniatura da versão das 18h03min de 20 de julho de 2017306 × 301 (12 kB)UnitsphereCorrected a "Thomas precession" rotation error in the intial version of this solution.
16h50min de 17 de fevereiro de 2014Miniatura da versão das 16h50min de 17 de fevereiro de 2014398 × 331 (9 kB)UnitsphereUser created page with UploadWizard

A seguinte página usa este ficheiro:

Utilização global do ficheiro

As seguintes wikis usam este ficheiro:

Metadados