Se
d
{\displaystyle d}
é a medida da aresta do poliedro platônico, então é possível definir o valor do raio da esfera circunscrita ao poliedro em função de
d
{\displaystyle d}
.
Tetraedro inscrito em esfera
editar
Tetraedro regular
A
B
C
D
{\displaystyle ABCD}
inscrito em esfera.
Fixe
d
{\displaystyle d}
como sendo a medida da aresta do tetraedro regular inscrito em uma esfera.
Seja
O
{\displaystyle O}
o ponto central da esfera inscrita ao tetraedro. Logo, o segmento que se estende do ponto
O
{\displaystyle O}
até um dos vértices do tetraedro será igual a medida do raio da esfera circunscrita a ele.
Sabendo que no tetraedro regular, a soma das distâncias de um ponto interior qualquer até as suas quatro faces é igual à altura do tetraedro, então vale que a soma das distâncias do ponto
O
{\displaystyle O}
até cada uma das faces resulta no valor da altura
h
{\displaystyle h}
do tetraedro. Logo, como cada uma dessas distâncias é igual a medida do raio
r
{\displaystyle r}
da esfera inscrita, segue que
4
r
=
h
{\displaystyle 4r=h}
⇒
r
=
h
4
.
{\displaystyle \Rightarrow r={\frac {h}{4}}.}
Como
h
=
6
3
d
{\displaystyle h={\frac {\sqrt {6}}{3}}d}
, então
r
=
6
3
d
4
{\displaystyle r={\frac {{\frac {\sqrt {6}}{3}}d}{4}}}
⇒
r
=
6
3
⋅
4
d
{\displaystyle \Rightarrow r={\frac {\sqrt {6}}{3\cdot 4}}d}
⇒
r
=
6
12
d
.
{\displaystyle \Rightarrow r={\frac {\sqrt {6}}{12}}d.}
Mas observe que,
R
+
r
=
h
{\displaystyle R+r=h}
, ou seja
R
+
r
=
h
{\displaystyle R+r=h}
⇒
R
+
6
12
d
=
6
3
d
{\displaystyle \Rightarrow R+{\frac {\sqrt {6}}{12}}d={\frac {\sqrt {6}}{3}}d}
⇒
R
=
6
3
d
−
6
12
d
{\displaystyle \Rightarrow R={\frac {\sqrt {6}}{3}}d-{\frac {\sqrt {6}}{12}}d}
⇒
R
=
4
6
12
d
−
6
12
d
{\displaystyle \Rightarrow R={\frac {4{\sqrt {6}}}{12}}d-{\frac {\sqrt {6}}{12}}d}
⇒
R
=
3
6
12
d
{\displaystyle \Rightarrow R={\frac {3{\sqrt {6}}}{12}}d}
⇒
R
=
6
4
d
.
{\displaystyle \Rightarrow R={\frac {\sqrt {6}}{4}}d.}
[ 2]
Cubo inscrito em esfera
editar
Seja
d
{\displaystyle d}
a medida da aresta do cubo . O valor do raio
R
{\displaystyle R}
da esfera circunscrita, será igual a metade do valor da diagonal do cubo. Logo, como a diagonal do cubo vale
d
3
{\displaystyle d{\sqrt {3}}}
, então
R
=
3
2
d
.
{\displaystyle R={\frac {\sqrt {3}}{2}}d.}
[ 2]
Octaedro inscrito em esfera
editar
Seja
d
{\displaystyle d}
a medida da aresta do octaedro regular. A medida do raio
R
{\displaystyle R}
da esfera circunscrita é igual a metade do valor da diagonal do octaedro. Como a diagonal do octaedro regular vale
d
2
{\displaystyle d{\sqrt {2}}}
, segue que
R
=
2
2
d
.
{\displaystyle R={\frac {\sqrt {2}}{2}}d.}
[ 2]
Dodecaedro inscrito em esfera
editar
Ilustração de dodecaedro regular inscrito em esfera.
Fixe
d
{\displaystyle d}
como sendo a medida da aresta de um dodecaedro regular inscrito em uma esfera. A medida do raio
R
{\displaystyle R}
da esfera circunscrita é dada por
R
=
3
4
(
1
+
5
)
d
{\displaystyle R={\frac {\sqrt {3}}{4}}(1+{\sqrt {5}})d}
.[ 3]
Icosaedro inscrito em esfera
editar
Ilustração de icosaedro regular inscrito em esfera.
Defina
d
{\displaystyle d}
como sendo o valor da medida da aresta de um icosaedro regular inscrito em uma esfera. A medida do raio
R
{\displaystyle R}
da esfera circunscrita ao poliedro é dada por
R
=
1
4
(
10
+
2
5
)
d
{\displaystyle R={\frac {1}{4}}{\sqrt {(10+2{\sqrt {5}})}}d}
.[ 3]
Para determinar a porcentagem do volume da esfera ocupado por um poliedro platônico inscrito a ela, pode-se utilizar a fórmula do volume do poliedro (que está fixado na tabela de propriedades métricas dos poliedros platônicos) e o raio da esfera circunscrita ao poliedro para calcular o volume da esfera circunscrita.
A fórmula utilizada para calcular o volume da esfera é:
V
=
4
3
⋅
π
R
3
.
{\displaystyle V={\frac {4}{3}}\cdot \pi R^{3}.}
[ 4]
Assim, o volume da esfera corresponderá a 100% do total e o volume do poliedro inscrito corresponderá à porcentagem ocupada que queremos descobrir (utilizaremos x ).
É possível relacionar os volumes por meio da regra de três . Abaixo, seguem desenvolvidas as relações para os cinco poliedros platônicos:
Para representar o volume do tetraedro, utilizaremos
V
1
{\displaystyle V_{1}}
, e para o volume da esfera circunscrita ao tetraedro, utilizaremos
V
2
{\displaystyle V_{2}}
:
V
1
=
2
12
⋅
d
3
{\displaystyle V_{1}={\frac {\sqrt {2}}{12}}\cdot d^{3}}
V
2
=
4
π
(
6
⋅
d
4
)
3
3
⇒
V
2
=
4
π
(
6
6
⋅
d
3
64
)
3
⇒
V
2
=
4
π
⋅
6
6
⋅
d
3
64
⋅
3
⇒
V
2
=
π
6
⋅
d
3
8
.
{\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {{\sqrt {6}}\cdot d}{4}}{\Big )}^{3}}{3}}\Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {6{\sqrt {6}}\cdot d^{3}}{64}}{\Big )}}{3}}\Rightarrow V_{2}={\dfrac {4\pi \cdot 6{\sqrt {6}}\cdot d^{3}}{64\cdot 3}}\Rightarrow V_{2}={\dfrac {\pi {\sqrt {6}}\cdot d^{3}}{8}}.}
Assim, o volume da esfera (
V
2
{\displaystyle V_{2}}
) representa 100% e o volume do tetraedro (
V
1
{\displaystyle V_{1}}
) será representado por
x
{\displaystyle x}
.
Utilizando regra de três, tem-se:
V
1
V
2
=
x
100
%
⇒
100
%
⋅
V
1
=
x
⋅
V
2
.
{\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.}
Substituindo os valores obtidos para
V
1
{\displaystyle V_{1}}
e
V
2
{\displaystyle V_{2}}
:
100
%
⋅
V
1
=
x
⋅
V
2
{\displaystyle 100\%\cdot V_{1}=x\cdot V_{2}}
⇒
100
%
⋅
2
12
⋅
d
3
=
x
⋅
π
6
⋅
d
3
8
{\displaystyle \Rightarrow 100\%\cdot {\frac {\sqrt {2}}{12}}\cdot d^{3}=x\cdot {\frac {\pi {\sqrt {6}}\cdot d^{3}}{8}}}
⇒
100
%
2
⋅
d
3
12
⋅
8
π
6
⋅
d
3
=
x
{\displaystyle \Rightarrow {\frac {100\%{\sqrt {2}}\cdot d^{3}}{12}}\cdot {\frac {8}{\pi {\sqrt {6}}\cdot d^{3}}}=x}
⇒
8
⋅
100
%
2
⋅
d
3
12
π
6
⋅
d
3
=
x
{\displaystyle \Rightarrow {\frac {8\cdot 100\%{\sqrt {2}}\cdot d^{3}}{12\pi {\sqrt {6}}\cdot d^{3}}}=x}
⇒
200
%
3
π
3
=
x
{\displaystyle \Rightarrow {\frac {200\%}{3\pi {\sqrt {3}}}}=x}
⇒
200
%
3
3
π
3
⋅
3
=
x
{\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{3\pi {\sqrt {3}}\cdot {\sqrt {3}}}}=x}
⇒
200
%
3
9
π
=
x
.
{\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{9\pi }}=x.}
Utilizando
π
≅
3
,
14
{\displaystyle \pi \cong 3,14}
e
3
≅
1
,
73
{\displaystyle {\sqrt {3}}\cong 1,73}
:
200
%
⋅
1
,
73
9
⋅
3
,
14
≅
x
{\displaystyle {\frac {200\%\cdot 1,73}{9\cdot 3,14}}\cong x}
⇒
346
%
28
,
26
≅
x
{\displaystyle \Rightarrow {\frac {346\%}{28,26}}\cong x}
⇒
12
,
24
%
≅
x
.
{\displaystyle \Rightarrow 12,24\%\cong x.}
[ 9]
Fixemos
V
1
{\displaystyle V_{1}}
para representar o volume do cubo e
V
2
{\displaystyle V_{2}}
para representar o volume da esfera circunscrita ao cubo:
V
1
=
d
3
{\displaystyle V_{1}=d^{3}}
V
2
=
4
π
(
3
⋅
d
2
)
3
3
⇒
V
2
=
4
π
(
3
3
⋅
d
3
8
)
3
⇒
V
2
=
4
π
⋅
3
3
⋅
d
3
8
⋅
3
⇒
V
2
=
π
3
⋅
d
3
2
.
{\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {{\sqrt {3}}\cdot d}{2}}{\Big )}^{3}}{3}}\Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {3{\sqrt {3}}\cdot d^{3}}{8}}{\Big )}}{3}}\Rightarrow V_{2}={\dfrac {4\pi \cdot 3{\sqrt {3}}\cdot d^{3}}{8\cdot 3}}\Rightarrow V_{2}={\dfrac {\pi {\sqrt {3}}\cdot d^{3}}{2}}.}
Logo, se
V
2
{\displaystyle V_{2}}
equivale a 100% do volume, então
V
1
{\displaystyle V_{1}}
equivale a
x
{\displaystyle x}
por cento.
Novamente, por meio de regra de três:
V
1
V
2
=
x
100
%
⇒
100
%
⋅
V
1
=
x
⋅
V
2
.
{\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.}
Substituindo
V
1
{\displaystyle V_{1}}
e
V
2
{\displaystyle V_{2}}
:
100
%
⋅
V
1
=
x
⋅
V
2
{\displaystyle 100\%\cdot V_{1}=x\cdot V_{2}}
⇒
100
%
⋅
d
3
=
x
⋅
π
3
⋅
d
3
2
{\displaystyle \Rightarrow 100\%\cdot d^{3}=x\cdot {\frac {\pi {\sqrt {3}}\cdot d^{3}}{2}}}
⇒
100
%
⋅
d
3
⋅
2
π
3
⋅
d
3
=
x
{\displaystyle \Rightarrow 100\%\cdot d^{3}\cdot {\frac {2}{\pi {\sqrt {3}}\cdot d^{3}}}=x}
⇒
200
%
⋅
d
3
π
3
⋅
d
3
=
x
{\displaystyle \Rightarrow {\frac {200\%\cdot d^{3}}{\pi {\sqrt {3}}\cdot d^{3}}}=x}
⇒
200
%
π
3
=
x
{\displaystyle \Rightarrow {\frac {200\%}{\pi {\sqrt {3}}}}=x}
⇒
200
%
3
π
3
⋅
3
=
x
{\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{\pi {\sqrt {3}}\cdot {\sqrt {3}}}}=x}
⇒
200
%
3
3
π
=
x
.
{\displaystyle \Rightarrow {\frac {200\%{\sqrt {3}}}{3\pi }}=x.}
Para
π
≅
3
,
14
{\displaystyle \pi \cong 3,14}
e
3
≅
1
,
73
{\displaystyle {\sqrt {3}}\cong 1,73}
, conclui-se:
200
%
⋅
1
,
73
3
⋅
3
,
14
≅
x
{\displaystyle {\frac {200\%\cdot 1,73}{3\cdot 3,14}}\cong x}
⇒
346
%
9
,
42
≅
x
{\displaystyle \Rightarrow {\frac {346\%}{9,42}}\cong x}
⇒
36
,
73
%
≅
x
.
{\displaystyle \Rightarrow 36,73\%\cong x.}
[ 9]
Sendo o volume do octaedro representado por
V
1
{\displaystyle V_{1}}
e o volume da esfera circunscrita ao octaedro representado por
V
2
{\displaystyle V_{2}}
:
V
1
=
2
3
⋅
d
3
{\displaystyle V_{1}={\frac {\sqrt {2}}{3}}\cdot d^{3}}
V
2
=
4
π
(
2
⋅
d
2
)
3
3
⇒
V
2
=
4
π
(
2
2
⋅
d
3
8
)
3
⇒
V
2
=
4
π
⋅
2
2
⋅
d
3
8
⋅
3
⇒
V
2
=
π
2
⋅
d
3
3
.
{\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {{\sqrt {2}}\cdot d}{2}}{\Big )}^{3}}{3}}\Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {2{\sqrt {2}}\cdot d^{3}}{8}}{\Big )}}{3}}\Rightarrow V_{2}={\dfrac {4\pi \cdot 2{\sqrt {2}}\cdot d^{3}}{8\cdot 3}}\Rightarrow V_{2}={\dfrac {\pi {\sqrt {2}}\cdot d^{3}}{3}}.}
Como
V
1
{\displaystyle V_{1}}
representa 100% do volume, então
V
2
{\displaystyle V_{2}}
ocupará
x
{\displaystyle x}
por cento do volume da esfera. Assim:
V
1
V
2
=
x
100
%
⇒
100
%
⋅
V
1
=
x
⋅
V
2
.
{\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.}
Novamente, substituindo
V
1
{\displaystyle V_{1}}
e
V
2
{\displaystyle V_{2}}
:
100
%
⋅
V
1
=
x
⋅
V
2
{\displaystyle 100\%\cdot V_{1}=x\cdot V_{2}}
⇒
100
%
⋅
2
3
⋅
d
3
=
x
⋅
π
2
⋅
d
3
3
{\displaystyle \Rightarrow 100\%\cdot {\frac {\sqrt {2}}{3}}\cdot d^{3}=x\cdot {\frac {\pi {\sqrt {2}}\cdot d^{3}}{3}}}
⇒
100
%
⋅
2
⋅
d
3
3
⋅
3
π
2
⋅
d
3
=
x
{\displaystyle \Rightarrow {\dfrac {100\%\cdot {\sqrt {2}}\cdot d^{3}}{3}}\cdot {\frac {3}{\pi {\sqrt {2}}\cdot d^{3}}}=x}
⇒
100
%
π
=
x
.
{\displaystyle \Rightarrow {\frac {100\%}{\pi }}=x.}
Utilizando
π
≅
3
,
14
{\displaystyle \pi \cong 3,14}
:
100
%
3
,
14
≅
x
{\displaystyle {\frac {100\%}{3,14}}\cong x}
⇒
31
,
85
%
≅
x
.
{\displaystyle \Rightarrow 31,85\%\cong x.}
[ 9]
Agora, seja
V
1
{\displaystyle V_{1}}
o volume do dodecaedro e
V
2
{\displaystyle V_{2}}
o volume da esfera circunscrita ao dodecaedro:
V
1
=
1
4
⋅
(
15
+
7
5
)
⋅
d
3
{\displaystyle V_{1}={\frac {1}{4}}\cdot (15+7{\sqrt {5}})\cdot d^{3}}
V
2
=
4
π
⋅
(
3
4
⋅
(
1
+
5
)
⋅
d
)
3
3
{\displaystyle V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {\sqrt {3}}{4}}\cdot (1+{\sqrt {5}})\cdot d{\Big )}^{3}}{3}}}
⇒
V
2
=
4
π
⋅
(
3
⋅
d
4
+
15
⋅
d
4
)
3
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}^{3}}{3}}}
⇒
V
2
=
4
π
⋅
(
3
⋅
d
4
+
15
⋅
d
4
)
⋅
(
3
⋅
d
4
+
15
⋅
d
4
)
⋅
(
3
⋅
d
4
+
15
⋅
d
4
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}}{3}}}
⇒
V
2
=
4
π
⋅
(
3
d
2
16
+
45
⋅
d
2
16
+
45
⋅
d
2
16
+
15
d
2
16
)
⋅
(
3
⋅
d
4
+
15
⋅
d
4
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3d^{2}}{16}}+{\frac {{\sqrt {45}}\cdot d^{2}}{16}}+{\frac {{\sqrt {45}}\cdot d^{2}}{16}}+{\frac {15d^{2}}{16}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}}{3}}}
⇒
V
2
=
4
π
⋅
(
3
d
2
16
+
2
45
⋅
d
2
16
+
15
d
2
16
)
⋅
(
3
d
4
+
15
d
4
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3d^{2}}{16}}+{\frac {2{\sqrt {45}}\cdot d^{2}}{16}}+{\frac {15d^{2}}{16}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}d}{4}}+{\frac {{\sqrt {15}}d}{4}}{\Big )}}{3}}}
⇒
V
2
=
4
π
⋅
(
3
d
2
16
+
6
5
⋅
d
2
16
+
15
d
2
16
)
⋅
(
3
⋅
d
4
+
15
⋅
d
4
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3d^{2}}{16}}+{\frac {6{\sqrt {5}}\cdot d^{2}}{16}}+{\frac {15d^{2}}{16}}{\Big )}\cdot {\Big (}{\frac {{\sqrt {3}}\cdot d}{4}}+{\frac {{\sqrt {15}}\cdot d}{4}}{\Big )}}{3}}}
⇒
V
2
=
4
π
⋅
(
3
3
⋅
d
3
64
+
6
15
⋅
d
3
64
+
15
3
⋅
d
3
64
+
3
15
⋅
d
3
64
+
6
75
⋅
d
3
64
+
15
15
⋅
d
3
64
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {6{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {3{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {6{\sqrt {75}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {15}}\cdot d^{3}}{64}}{\Big )}}{3}}}
⇒
V
2
=
4
π
⋅
(
3
3
⋅
d
3
64
+
6
15
⋅
d
3
64
+
15
3
⋅
d
3
64
+
3
15
⋅
d
3
64
+
30
3
⋅
d
3
64
+
15
15
⋅
d
3
64
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {3{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {6{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {3{\sqrt {15}}\cdot d^{3}}{64}}+{\frac {30{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {15{\sqrt {15}}\cdot d^{3}}{64}}{\Big )}}{3}}}
⇒
V
2
=
4
π
⋅
(
48
3
⋅
d
3
64
+
24
15
⋅
d
3
64
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi \cdot {\Big (}{\frac {48{\sqrt {3}}\cdot d^{3}}{64}}+{\frac {24{\sqrt {15}}\cdot d^{3}}{64}}{\Big )}}{3}}}
⇒
V
2
=
π
⋅
(
48
3
⋅
d
3
+
24
15
⋅
d
3
16
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {\pi \cdot {\Big (}{\frac {48{\sqrt {3}}\cdot d^{3}+24{\sqrt {15}}\cdot d^{3}}{16}}{\Big )}}{3}}}
⇒
V
2
=
48
3
⋅
d
3
⋅
π
+
24
15
⋅
d
3
⋅
π
16
⋅
3
{\displaystyle \Rightarrow V_{2}={\dfrac {48{\sqrt {3}}\cdot d^{3}\cdot \pi +24{\sqrt {15}}\cdot d^{3}\cdot \pi }{16\cdot 3}}}
⇒
V
2
=
3
⋅
d
3
⋅
π
+
15
⋅
d
3
⋅
π
2
{\displaystyle \Rightarrow V_{2}={\sqrt {3}}\cdot d^{3}\cdot \pi +{\frac {{\sqrt {15}}\cdot d^{3}\cdot \pi }{2}}}
⇒
V
2
=
π
⋅
(
3
+
15
2
)
⋅
d
3
.
{\displaystyle \Rightarrow V_{2}=\pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}.}
Desse modo,
V
2
{\displaystyle V_{2}}
representa 100% do volume e
V
1
{\displaystyle V_{1}}
representa
x
{\displaystyle x}
por cento.
V
1
V
2
=
x
100
%
⇒
100
%
⋅
V
1
=
x
⋅
V
2
.
{\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.}
Logo, com os valores obtidos para
V
1
{\displaystyle V_{1}}
e
V
2
{\displaystyle V_{2}}
:
100
%
⋅
1
4
⋅
(
15
+
7
5
)
⋅
d
3
=
x
⋅
π
⋅
(
3
+
15
2
)
⋅
d
3
{\displaystyle 100\%\cdot {\frac {1}{4}}\cdot (15+7{\sqrt {5}})\cdot d^{3}=x\cdot \pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}}
⇒
(
1500
%
+
700
%
5
)
⋅
d
3
4
=
x
⋅
π
⋅
(
3
+
15
2
)
⋅
d
3
{\displaystyle \Rightarrow {\frac {(1500\%+700\%{\sqrt {5}})\cdot d^{3}}{4}}=x\cdot \pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}}
⇒
(
1500
%
+
700
%
5
)
⋅
d
3
=
4
⋅
x
⋅
π
⋅
(
3
+
15
2
)
⋅
d
3
{\displaystyle \Rightarrow (1500\%+700\%{\sqrt {5}})\cdot d^{3}=4\cdot x\cdot \pi \cdot {\bigg (}{\sqrt {3}}+{\frac {\sqrt {15}}{2}}{\bigg )}\cdot d^{3}}
⇒
(
1500
%
+
700
%
5
)
⋅
d
3
=
x
⋅
π
⋅
(
4
3
+
2
15
)
⋅
d
3
{\displaystyle \Rightarrow (1500\%+700\%{\sqrt {5}})\cdot d^{3}=x\cdot \pi \cdot {\Big (}4{\sqrt {3}}+2{\sqrt {15}}{\Big )}\cdot d^{3}}
⇒
(
1500
%
+
700
%
5
)
⋅
d
3
π
⋅
(
4
3
+
2
15
)
⋅
d
3
=
x
{\displaystyle \Rightarrow {\dfrac {(1500\%+700\%{\sqrt {5}})\cdot d^{3}}{\pi \cdot {\Big (}4{\sqrt {3}}+2{\sqrt {15}}{\Big )}\cdot d^{3}}}=x}
⇒
1500
%
+
700
%
5
2
π
⋅
(
2
3
+
15
)
=
x
.
{\displaystyle \Rightarrow {\dfrac {1500\%+700\%{\sqrt {5}}}{2\pi \cdot {\Big (}2{\sqrt {3}}+{\sqrt {15}}{\Big )}}}=x.}
Para
5
≅
2
,
24
{\displaystyle {\sqrt {5}}\cong 2,24}
,
π
≅
3
,
14
{\displaystyle \pi \cong 3,14}
,
3
≅
1
,
73
{\displaystyle {\sqrt {3}}\cong 1,73}
e
15
≅
3
,
87
{\displaystyle {\sqrt {15}}\cong 3,87}
, tem-se:
1500
%
+
700
%
⋅
2
,
24
2
⋅
3
,
14
⋅
(
2
⋅
1
,
73
+
3
,
87
)
≅
x
{\displaystyle {\dfrac {1500\%+700\%\cdot 2,24}{2\cdot 3,14\cdot {\Big (}2\cdot 1,73+3,87{\Big )}}}\cong x}
⇒
3068
%
46
,
03
≅
x
{\displaystyle \Rightarrow {\dfrac {3068\%}{46,03}}\cong x}
⇒
66
,
65
%
≅
x
{\displaystyle \Rightarrow 66,65\%\cong x}
.[ 9]
Para representar o volume do icosaedro utilizaremos
V
1
{\displaystyle V_{1}}
e para representar o volume da esfera circunscrita ao icosaedro utilizaremos
V
2
{\displaystyle V_{2}}
:
V
1
=
5
12
⋅
(
3
+
5
)
⋅
d
3
{\displaystyle V_{1}={\frac {5}{12}}\cdot (3+{\sqrt {5}})\cdot d^{3}}
V
2
=
4
π
(
1
4
⋅
10
+
2
5
⋅
d
)
3
3
{\displaystyle V_{2}={\dfrac {4\pi {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}^{3}}{3}}}
⇒
V
2
=
4
π
(
1
4
⋅
10
+
2
5
⋅
d
)
⋅
(
1
4
⋅
10
+
2
5
⋅
d
)
⋅
(
1
4
⋅
10
+
2
5
⋅
d
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}}{3}}}
⇒
V
2
=
4
π
(
(
10
+
2
5
)
⋅
d
2
16
⋅
d
)
⋅
(
1
4
⋅
10
+
2
5
⋅
d
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {(10+2{\sqrt {5}})\cdot d^{2}}{16}}\cdot d{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}}{3}}}
⇒
V
2
=
4
π
(
5
d
2
8
+
5
⋅
d
2
8
)
⋅
(
1
4
⋅
10
+
2
5
⋅
d
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\Big (}{\frac {5d^{2}}{8}}+{\frac {{\sqrt {5}}\cdot d^{2}}{8}}{\Big )}\cdot {\Big (}{\frac {1}{4}}\cdot {\sqrt {10+2{\sqrt {5}}}}\cdot d{\Big )}}{3}}}
⇒
V
2
=
4
π
(
5
10
+
2
5
⋅
d
3
32
+
5
⋅
(
10
+
2
5
)
⋅
d
3
32
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {4\pi {\bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}\cdot d^{3}}{32}}+{\frac {{\sqrt {5\cdot (10+2{\sqrt {5}})}}\cdot d^{3}}{32}}{\bigg )}}{3}}}
⇒
V
2
=
π
(
5
10
+
2
5
⋅
d
3
+
50
+
10
5
⋅
d
3
8
)
3
{\displaystyle \Rightarrow V_{2}={\dfrac {\pi {\bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}\cdot d^{3}+{\sqrt {50+10{\sqrt {5}}}}\cdot d^{3}}{8}}{\bigg )}}{3}}}
⇒
V
2
=
π
(
5
10
+
2
5
+
50
+
10
5
)
⋅
d
3
8
⋅
3
{\displaystyle \Rightarrow V_{2}={\frac {\pi {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}\cdot d^{3}}{8\cdot 3}}}
⇒
V
2
=
π
⋅
(
5
10
+
2
5
+
50
+
10
5
24
)
⋅
d
3
.
{\displaystyle \Rightarrow V_{2}=\pi \cdot {\Bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}}{24}}{\Bigg )}\cdot d^{3}.}
Como
V
2
{\displaystyle V_{2}}
vale 100%, então o volume de
V
1
{\displaystyle V_{1}}
será de
x
{\displaystyle x}
por cento.
V
1
V
2
=
x
100
%
⇒
100
%
⋅
V
1
=
x
⋅
V
2
.
{\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {x}{100\%}}\Rightarrow 100\%\cdot V_{1}=x\cdot V_{2}.}
Ou seja, com os valores obtidos para
V
1
{\displaystyle V_{1}}
e
V
2
{\displaystyle V_{2}}
:
100
%
⋅
5
12
⋅
(
3
+
5
)
⋅
d
3
=
x
⋅
π
⋅
(
5
10
+
2
5
+
50
+
10
5
24
)
⋅
d
3
{\displaystyle 100\%\cdot {\frac {5}{12}}\cdot (3+{\sqrt {5}})\cdot d^{3}=x\cdot \pi \cdot {\Bigg (}{\frac {5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}}{24}}{\Bigg )}\cdot d^{3}}
⇒
(
1500
%
+
500
%
5
)
⋅
d
3
12
=
x
⋅
[
π
⋅
(
5
10
+
2
5
+
50
+
10
5
)
⋅
d
3
24
]
{\displaystyle \Rightarrow {\frac {(1500\%+500\%{\sqrt {5}})\cdot d^{3}}{12}}=x\cdot {\Bigg [}{\frac {\pi \cdot {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}\cdot d^{3}}{24}}{\Bigg ]}}
⇒
[
(
1500
%
+
500
%
5
)
⋅
d
3
12
]
⋅
[
24
π
⋅
(
5
10
+
2
5
+
50
+
10
5
)
⋅
d
3
]
=
x
{\displaystyle \Rightarrow {\Bigg [}{\frac {(1500\%+500\%{\sqrt {5}})\cdot d^{3}}{12}}{\Bigg ]}\cdot {\Bigg [}{\frac {24}{\pi \cdot {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}\cdot d^{3}}}{\Bigg ]}=x}
⇒
2
⋅
(
1500
%
+
500
%
5
)
π
⋅
(
5
10
+
2
5
+
50
+
10
5
)
=
x
.
{\displaystyle \Rightarrow {\frac {2\cdot (1500\%+500\%{\sqrt {5}})}{\pi \cdot {\Big (}5{\sqrt {10+2{\sqrt {5}}}}+{\sqrt {50+10{\sqrt {5}}}}{\Big )}}}=x.}
Utilizando
5
≅
2
,
24
{\displaystyle {\sqrt {5}}\cong 2,24}
e
π
≅
3
,
14
{\displaystyle \pi \cong 3,14}
:
2
⋅
(
1500
%
+
500
%
⋅
2
,
24
)
3
,
14
⋅
(
5
10
+
2
⋅
2
,
24
+
50
+
10
⋅
2
,
24
)
≅
x
{\displaystyle {\frac {2\cdot (1500\%+500\%\cdot 2,24)}{3,14\cdot {\Big (}5{\sqrt {10+2\cdot 2,24}}+{\sqrt {50+10\cdot 2,24}}{\Big )}}}\cong x}
⇒
5240
%
3
,
14
⋅
(
5
14
,
48
+
72
,
4
)
≅
x
.
{\displaystyle \Rightarrow {\frac {5240\%}{3,14\cdot {\Big (}5{\sqrt {14,48}}+{\sqrt {72,4}}{\Big )}}}\cong x.}
Ainda, sendo
14
,
48
≅
3
,
81
{\displaystyle {\sqrt {14,48}}\cong 3,81}
e
72
,
4
≅
8
,
51
{\displaystyle {\sqrt {72,4}}\cong 8,51}
:
5240
%
3
,
14
⋅
(
5
⋅
3
,
81
+
8
,
51
)
≅
x
{\displaystyle {\frac {5240\%}{3,14\cdot {\Big (}5\cdot 3,81+8,51{\Big )}}}\cong x}
⇒
5240
%
86
,
54
≅
x
{\displaystyle \Rightarrow {\frac {5240\%}{86,54}}\cong x}
⇒
60
,
55
%
≅
x
.
{\displaystyle \Rightarrow 60,55\%\cong x.}
[ 9]