Poliedros de Kepler-Poinsot

Um poliedro de Kepler-Poinsot é um poliedro regular não convexo. Todas as suas faces são polígonos regulares iguais, e em todos os vértices encontram-se o mesmo número de faces (comparar com sólidos platónicos).

O grande dodecaedro, um dos quatro poliedros de Kepler-Poinsot

Tabela

editar

Existem quatro Poliedros de Kepler-Poinsot, os quais estão listados a seguir:

Poliedro de Kepler-Poinsot Imagem Faces Vértices Arestas
Pequeno dodecaedro estrelado   12 pentagramas regulares 12 30
Grande dodecaedro estrelado   12 pentagramas regulares 20 30
Grande dodecaedro   12 pentágonos regulares 12 30
Icosaedro estrelado   20 triângulos equiláteros 12 30

História

editar

Johannes Kepler, em 1619, descobriu dois poliedros que são simultaneamente regulares e não convexos - o pequeno dodecaedro estrelado e o grande dodecaedro estrelado.

Dois séculos mais tarde provar-se-ia que existem apenas nove poliedros regulares: os cinco sólidos platónicos e quatro poliedros regulares não convexos - os poliedros de Kepler-Poinsot.