Em matemática, mais especificamente em teoria da ordem, uma pré-ordem ou quase-ordem é uma relação binária reflexiva e transitiva.

Toda ordem parcial ou relação de equivalência é também uma pré-ordem.

Definição formal

editar

Seja A um conjunto e R uma relação binária sobre A (ou seja, R subconjunto de AxA). Então, R é uma pré-ordem sobre A se, e somente se, R é reflexiva e transitiva. Isto é:

  (propriedade reflexiva)

  (propriedade transitiva)

Muitas vezes é usada a notação de par ordenado. Neste caso, escreveríamos:   é uma pré-ordem.

Exemplos

editar
  • Todo espaço topológico finito gera uma pré-ordem nos seus pontos, na qual xy se, e somente se, x pertence a toda vizinhança de y.
  • Sobre os arcos de um grafo orientado, a relação ser acessível por é uma pré-ordem. Se o digrafo é acíclico, essa relação vira uma ordem.
  • Em um anel comutativo, a relação divide é uma pré-ordem.
  • Seja   um monoide. Definimos a relação   em   como
 .
Assim,   é uma pré-ordem.
  • A relação definida por  , injetora.
  • Dada uma relação de pré-ordem  , então,   também é uma pré-ordem.
  • Uma categoria com no máximo um morfismo de algum objeto   para algum outro objeto   é uma pré-ordem. Neste sentido, categorias "generalizam" pré-ordens aceitando mais do que uma relação entre objetos: cada morfismo é uma relação de pré-ordem diferente.
  • Considere o conjunto   de todas as funções do conjunto dos números naturais   em  . Definimos a relação   para   como
 
(considerando   como a ordem natural de  ).
Então   é uma pré-ordem.

Esquema de temas relacionados

editar
Teoria da ordem
Bem ordenado
Ordem total
Parcialmente ordenado
Pré-ordenado
Relação reflexiva
Relação transitiva
Relação antissimétrica
Relação total
Relação bem-fundada

Ver também

editar

Referências

Bibliografia

editar
  • Schröder, Bernd S. W. (2002), Ordered Sets: An Introduction, ISBN 0-8176-4128-9, Boston: Birkhäuser