Um primo circular é um número primo com a propriedade que o número gerado a cada passo intermediário quando permutando ciclicamente seus dígitos (na base 10) também é um número primo.[1][2] Por exemplo, 1193 é um primo circular, pois 1931, 9311 e 3119 são todos também primos.[3] Um primo circular com no mínimo dois dígitos deve consistir somente de combinações dos dígitos 1, 3, 7 ou 9, porque tendo 0, 2, 4, 6 ou 8 como o último dígito torna o número divisível por 2, e tendo 0 ou 5 como o último dígito torna-o divisível por 5.[4] A lista completa dos menores primos representativos de todos os ciclos conhecidos de primos circulares (os primos de um dígito repunits são os únicos membros de seus respectivos ciclos) é 2, 3, 5, 7, R2, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, R19, R23, R317, R1031, R49081, R86453, R109297 e R270343, onde Rn é um primo repunit com n dígitos. Não há outros primos circulares até 1023.[3] Um tipo de primo relacionado aos primos circulares são os primos permutáveis, que são um subconjunto dos primos circulares (todo primo permutável também é um primo circular, mas não necessariamente vice-versa).[3]

As permutações cíclicas do número primo 19937.

Referências

  1. The Universal Book of Mathematics, Darling, David J., p. 70 
  2. Prime Numbers—The Most Mysterious Figures in Math, Wells, D., p. 47 (page 28 of the book) 
  3. a b c Circular Primes, Patrick De Geest, consultado em 8 de novembro de 2020 
  4. The mathematics of Oz: mental gymnastics from beyond the edge, Pickover, Clifford A., p. 330, consultado em 8 de novembro de 2020 

Ligações externas

editar