O quark down, quark
d
ou, simplesmente, down é um férmion de spin 1/2, carga elétrica -1/3 e número bariônico 1/3.[2][3]. Os quarks up e down são os quarks mais comuns e menos massivos; ambos são os componentes fundamentais dos prótons e nêutrons.

Quark down
O nêutron é constituído por dois quarks down e um quark up.
Composição: partícula elementar
Geração: Primeira
Interação: forte, fraca, eletromagnética, gravitacional
Símbolo(s):
d
Antipartícula: antiquark down (
d
)
Teorizada: Murray Gell-Mann (1964)
George Zweig (1964)
Descoberta: SLAC (1968)
Massa: 4.8+0.5
−0.3
 MeV/c2
[1]
Decaimento de partícula: estável ou quark up+elétron+antineutrino do elétron
Carga elétrica: -13 e
Carga de cor: sim
Spin: 12

História

editar

Depois de descobrir que o átomo era divisível, os prótons e nêutrons foram considerados elementares até que a existência dos quarks, partículas que formariam os núcleons, foi postulada em 1964 pelos físicos Murray Gell-Mann e George Zweig. Os quarks up e down foram observados pela primeira vez em 1968 no Centro de Aceleração Linear de Stanford.[4][5][6][7]

A massa dos quarks down ainda não foi medida com precisão, mas estima-se que esteja entre 4,5 e 5,3 MeV/c²,[1] porém quando encontrado dentro de um méson ou de um bárion, a força nuclear forte devida aos glúons aumenta a sua massa para 330 MeV. Essa massa aumentada se chama massa efetiva.

Antipartícula

editar

O quark down tem uma antipartícula: o antiquark down, que tem a mesma massa que o quark down e características como o spin têm mesmo modulo porém sinal contrário.

Ver também

editar

Referências

  1. a b J. Beringer (Particle Data Group); et al. (2013). «PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b′, t′, Free)'» (PDF). Particle Data Group. Consultado em 27 de julho de 2017 
  2. M. Gell-Mann (2000) [1964]. «The Eightfold Way: A theory of strong interaction symmetry». In: M. Gell-Manm, Y. Ne'emann. The Eightfold Way. [S.l.]: Westview Press. p. 11. ISBN 0-7382-0299-1 
    Original: M. Gell-Mann (1961). «The Eightfold Way: A theory of strong interaction symmetry». California Institute of Technology. Synchroton Laboratory Report CTSL-20 
  3. Y. Ne'emann (2000) [1964]. «Derivation of strong interactions from gauge invariance». In: M. Gell-Manm, Y. Ne'emann. The Eightfold Way. [S.l.]: Westview Press. ISBN 0-7382-0299-1 
    Original: Y. Ne'emann (1961). «Derivation of strong interactions from gauge invariance». Nuclear Physics. 26. 222 páginas. doi:10.1016/0029-5582(61)90134-1 
  4. R. P. Feynman (1969). «Very High-Energy Collisions of Hadrons». Physical Review Letters. 23 (24): 1415–1417. doi:10.1103/PhysRevLett.23.1415 
  5. S. Kretzer; et al. (2004). «CTEQ6 Parton Distributions with Heavy Quark Mass Effects». Physical Review D. 69 (11): 114005. doi:10.1103/PhysRevD.69.114005. Arxiv 
  6. D. J. Griffiths (1987). Introduction to Elementary Particles. [S.l.]: John Wiley & Sons. p. 42. ISBN 0-471-60386-4 
  7. M. E. Peskin, D. V. Schroeder (1995). An introduction to quantum field theory. [S.l.]: Addison–Wesley. p. 556. ISBN 0-201-50397-2 
  Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.