Tabuleiro de Galton
O Tabuleiro de Galton,[1] também conhecido como Quincunx, é um dispositivo inventado por Sir Francis Galton para demonstrar o teorema do limite central, em particular, que a distribuição normal é aproximada à distribuição binomial. Entre suas aplicações, oferecer ideias sobre regressão para média.
Descrição
editarO tabuleiro consiste de uma placa vertical com fileiras entrelaçadas de pinos. Bolas são jogadas a partir do topo; ao bater nos pinos, elas se distribuem para a esquerda ou para a direita. Caso a probabilidade da bola ir para direita seja igual a probabilidade da bola ir para a esquerda, ao cair nas bandejas inferiores, a altura das bolas acumuladas nas bandejas, eventualmente, irá simular uma curva em forma de sino.[2]
A sobreposição do triângulo de Pascal[3] para os pinos mostra o número de diferentes caminhos que podem ser tomados para cada bandeja.
Grande escala de modelos de trabalho desse dispositivo pode ser visto no Mathematica: Um Mundo de Números... e Além de exposições permanentemente em exibição no Museu de Ciência de Boston, Nova York Hall of Science ou Museu da matemática da Universidade de São Paulo.
Distribuição das bolas
editarSe uma bola salta para a direita de k vezes em sua descida (e à esquerda sobre os pinos restantes) acaba na k-ésima bandeja contando da esquerda. Denotando o número de linhas[4] de pinos em um tabuleiro por n, o número de caminhos para a k-ésima bandeja na parte inferior é dada pelo
coeficiente binomial . Se a probabilidade de saltar para a direita em um pino é p (que é igual a 0,5 em um viés do tabuleiro) a probabilidade de que a bola termine na k-ésima bandeja é igual a . Esta é a probabilidade de massa em função de uma distribuição binomial.
De acordo com o teorema do limite central (mais especificamente, o teorema de Moivre-Laplace), a distribuição binomial se aproxima da distribuição normal, desde que n, o número de fileiras de pinos no tabuleiro, seja grande.
Jogos
editarVários jogos foram desenvolvidos usando a ideia de pinos alterando a rota de bolas ou outros objetos:
Outros ficheiros
editar-
Antes e depois do giro
-
Tabuleiro de Galton
Ligações externas
editar- Museu da matemática da Universidade de São Paulo
- A NetLogo simulation and explanation
- Plinko and the Binomial Distribution Interactive simulation
- A simulation with explanations
- Another simulation from John Carroll University
- Quincunx and its relationship to normal distribution from Math Is Fun
- Dynamical turbulent flow on the Galton board with friction
- Animations for the Bean Machine by Lijia Yu using Yihui Xie's R animation package animation
- Pascal's Marble Run: a deterministic Galton board
- Galton-i: board game with chance and tactics
Referências
- ↑ Galton, Sir Francis (1894). Natural Inheritance. Macmillan: [s.n.] 63 páginas
- ↑ «TABULEIRO DE GALTON OU QUINCUX | Matemateca». matemateca.ime.usp.br. Consultado em 1 de fevereiro de 2017
- ↑ Aquino, Priscila Massetto de (2004). O ESTUDO DA DISTRIBUIÇÃO NORMAL POR GALTON. Campinas-São Paulo: Universidade Estadual de Campinas
- ↑ «Tabuleiro de Galton (4D20.30) - Sala de Demonstrações de Física - UFMG». demonstracoes.fisica.ufmg.br. Consultado em 1 de fevereiro de 2017