Tensor tensão de Piola-Kirchhoff

Os tensores tensão de Piola-Kirchhoff são tensores usados na teoria da elasticidade com deformações finitas para representar a tensão com respeito à configuração inicial não deformada. Isto contrasta com o tensor tensão de Cauchy usualmente usado para representar as tensões configuração deformada.

A teoria linear da elasticidade, devido à configuração deformada e a configuração não deformada serem praticamente iguais, permite usar o tensor tensão de Cauchy para representar as tensões na configuração inicial não deformada com muito boa aproximação. Entretanto, com grandes deformações este modo de proceder não é adequado, sendo em geral requerido o uso dos tensores de Piola-Kirchhoff. Existem dois tipos de tensores de Piola-Kirchoff:

  • Primeiro tensor de Piola-Kirchoff, que é um tensor misto que relaciona a configuração inicial não deformada com as tensões na configuração deformada.
  • Segundo tensor de Piola-Kirchoff.

Estes tensores recebem seu nome dos pesquisadores Gabrio Piola e Gustav Kirchhoff.

1o tensor tensão de Piola-Kirchhoff

editar

Ainda que no tensor tensão de Cauchy TC = (τij) relacionam-se as forças na configuração final deformada com as áreas da configuração final deformada, o primeiro tensor de Piola-Kirchhoff TR = (KIj) relaciona as forças na configuração final deformada com as áreas na configuração inicial não deformada (configuração material). As componentes deste tensor se relacionam com as do tensor de Cauchy mediante:

 

Onde   é o gradiente de deformação, que relaciona a configuração inicial não deformada e a configuração final deformada. Mais sensivelmente em componentes e usando em notação de Einstein, a relação anterior pode ser escrita como:

 

Posto que este tensor relaciona magnitudes de diferentes sistemas coordenados é um tensor de "dois pontos" ou tensor misto. Em geral este tensor não será simétrico. Em uma rotação rígida as componentes deste tensor em geral não se manterão constantes. Este tensor é o "momento conjugado" do gradiente de deformação.

2o tensor tensão de Piola-Kirchhoff

editar

Ainda que o primeiro tensor de Piola-Kirchhoff TR relaciona forças na configuração final deformada com áreas na configuração inicial não deformada, o segundo tensor de Piola-Kirchhoff ΣR = (SIJ) relaciona forças e áreas sobre a configuração inicial não deformada, e portanto constitui um tensor ordinário (não misto). As forças sobre a configuração inicial de referência se obtém projetando as forças sobre a configuração deformada, através de isomorfismo que relaciona ambas geometrias. A relação entre o segundo tensor de Piola-Kirchhoff e o tensor tensão de Cauchy vem a ser dado por:

 

Por definição além deste tensor, assim como o tensor tensão de Cauchy, é simétrico. A relação anterior expressa em componentes é simplesmente:

 

Se o material rota mediante uma "rotação rígida" sem alteração de forma e portanto sem alteração nas tensões, então as componentes do segundo tensor de Piola-Kirchhoff permanecem constantes durante esta rotação.

Este segundo tensor de Piola-Kirchhoff é o "momento conjugado" respectivo à energia total do tensor deformação de Green-Lagrange.

Referências

editar
  • Introduction to the mechanics of a continuum medium, L. E. Malvern, Prentice-Hall, Englewood Cliffs, NJ, 1969.
  Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.