Em matemática , o produto de Wallis para π , expresso em 1655 por John Wallis , estabelece que
∏
n
=
1
∞
(
2
n
2
n
−
1
⋅
2
n
2
n
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
8
7
⋅
8
9
⋯
=
π
2
{\displaystyle \prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {\pi }{2}}}
Comparação da convergência do produto de Wallis (asteriscos em roxo) e diversas séries infinitas históricas para π. Sn é a aproximação após tomar n termos. Cada subsequente subplotagem magnifica a área sombreada horizontalmente por 10 vezes. (clicar para detalhe)
Wallis deduziu este produto infinito como ele é apresentado atualmente em livros de cálculo, examinando
∫
0
π
sin
n
x
d
x
{\displaystyle \textstyle \int _{0}^{\pi }\sin ^{n}x\,dx}
para valores pares e ímpares de n , e notando que para grandes n , aumentando n por 1 resulta em uma mudança que torna-se menor quando n aumenta. Como o cálculo infinitesimal moderno ainda não existia, e a análise matemática naquela época era inadequada para discutir as questões de convergência, esta era uma pesquisa difícil bem como também uma tentativa.
O produto de Wallis é, em retrospecto, um corolário fácil da posterior fórmula de Euler para a função senoidal . Em 2015 os pesquisadores Carl Richard Hagen e Tamar Friedmann , em uma descoberta surpresa, encontraram a mesma fórmula nos cálculos da mecânica quântica dos níveis de energia de um átomo de hidrogênio .[ 1] [ 2] [ 3] [ 4] [ 5]
Prova usando o produto infinito de Euler para a função seno[ 6]
editar
sin
x
x
=
∏
n
=
1
∞
(
1
−
x
2
n
2
π
2
)
{\displaystyle {\frac {\sin x}{x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)}
Seja x = π 2 :
⇒
2
π
=
∏
n
=
1
∞
(
1
−
1
4
n
2
)
⇒
π
2
=
∏
n
=
1
∞
(
4
n
2
4
n
2
−
1
)
=
∏
n
=
1
∞
(
2
n
2
n
−
1
⋅
2
n
2
n
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋯
{\displaystyle {\begin{aligned}\Rightarrow {\frac {2}{\pi }}&=\prod _{n=1}^{\infty }\left(1-{\frac {1}{4n^{2}}}\right)\\\Rightarrow {\frac {\pi }{2}}&=\prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)\\&=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdots \end{aligned}}}
Seja:
I
(
n
)
=
∫
0
π
sin
n
x
d
x
{\displaystyle I(n)=\int _{0}^{\pi }\sin ^{n}x\,dx}
(uma forma da integral de Wallis ).
Integração por partes :
u
=
sin
n
−
1
x
⇒
d
u
=
(
n
−
1
)
sin
n
−
2
x
cos
x
d
x
d
v
=
sin
x
d
x
⇒
v
=
−
cos
x
{\displaystyle {\begin{aligned}u&=\sin ^{n-1}x\\\Rightarrow du&=(n-1)\sin ^{n-2}x\cos x\,dx\\dv&=\sin x\,dx\\\Rightarrow v&=-\cos x\end{aligned}}}
⇒
I
(
n
)
=
∫
0
π
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
|
0
π
−
∫
0
π
(
−
cos
x
)
(
n
−
1
)
sin
n
−
2
x
cos
x
d
x
=
0
+
(
n
−
1
)
∫
0
π
cos
2
x
sin
n
−
2
x
d
x
,
n
>
1
=
(
n
−
1
)
∫
0
π
(
1
−
sin
2
x
)
sin
n
−
2
x
d
x
=
(
n
−
1
)
∫
0
π
sin
n
−
2
x
d
x
−
(
n
−
1
)
∫
0
π
sin
n
x
d
x
=
(
n
−
1
)
I
(
n
−
2
)
−
(
n
−
1
)
I
(
n
)
=
n
−
1
n
I
(
n
−
2
)
⇒
I
(
n
)
I
(
n
−
2
)
=
n
−
1
n
⇒
I
(
2
n
−
1
)
I
(
2
n
+
1
)
=
2
n
+
1
2
n
{\displaystyle {\begin{aligned}\Rightarrow I(n)&=\int _{0}^{\pi }\sin ^{n}x\,dx\\{}&=-\sin ^{n-1}x\cos x|_{0}^{\pi }-\int _{0}^{\pi }(-\cos x)(n-1)\sin ^{n-2}x\cos x\,dx\\{}&=0+(n-1)\int _{0}^{\pi }\cos ^{2}x\sin ^{n-2}x\,dx,\qquad n>1\\{}&=(n-1)\int _{0}^{\pi }(1-\sin ^{2}x)\sin ^{n-2}x\,dx\\{}&=(n-1)\int _{0}^{\pi }\sin ^{n-2}x\,dx-(n-1)\int _{0}^{\pi }\sin ^{n}x\,dx\\{}&=(n-1)I(n-2)-(n-1)I(n)\\{}&={\frac {n-1}{n}}I(n-2)\\\Rightarrow {\frac {I(n)}{I(n-2)}}&={\frac {n-1}{n}}\\\Rightarrow {\frac {I(2n-1)}{I(2n+1)}}&={\frac {2n+1}{2n}}\end{aligned}}}
Este resultado será usado abaixo:
I
(
0
)
=
∫
0
π
d
x
=
x
|
0
π
=
π
I
(
1
)
=
∫
0
π
sin
x
d
x
=
−
cos
x
|
0
π
=
(
−
cos
π
)
−
(
−
cos
0
)
=
−
(
−
1
)
−
(
−
1
)
=
2
I
(
2
n
)
=
∫
0
π
sin
2
n
x
d
x
=
2
n
−
1
2
n
I
(
2
n
−
2
)
=
2
n
−
1
2
n
⋅
2
n
−
3
2
n
−
2
I
(
2
n
−
4
)
{\displaystyle {\begin{aligned}I(0)&=\int _{0}^{\pi }dx=x|_{0}^{\pi }=\pi \\I(1)&=\int _{0}^{\pi }\sin x\,dx=-\cos x|_{0}^{\pi }=(-\cos \pi )-(-\cos 0)=-(-1)-(-1)=2\\I(2n)&=\int _{0}^{\pi }\sin ^{2n}x\,dx={\frac {2n-1}{2n}}I(2n-2)={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}I(2n-4)\end{aligned}}}
Repetindo o processo,
=
2
n
−
1
2
n
⋅
2
n
−
3
2
n
−
2
⋅
2
n
−
5
2
n
−
4
⋅
⋯
⋅
5
6
⋅
3
4
⋅
1
2
I
(
0
)
=
π
∏
k
=
1
n
2
k
−
1
2
k
{\displaystyle ={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}\cdot {\frac {2n-5}{2n-4}}\cdot \cdots \cdot {\frac {5}{6}}\cdot {\frac {3}{4}}\cdot {\frac {1}{2}}I(0)=\pi \prod _{k=1}^{n}{\frac {2k-1}{2k}}}
I
(
2
n
+
1
)
=
∫
0
π
sin
2
n
+
1
x
d
x
=
2
n
2
n
+
1
I
(
2
n
−
1
)
=
2
n
2
n
+
1
⋅
2
n
−
2
2
n
−
1
I
(
2
n
−
3
)
{\displaystyle I(2n+1)=\int _{0}^{\pi }\sin ^{2n+1}x\,dx={\frac {2n}{2n+1}}I(2n-1)={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}I(2n-3)}
Repetindo o processo,
=
2
n
2
n
+
1
⋅
2
n
−
2
2
n
−
1
⋅
2
n
−
4
2
n
−
3
⋅
⋯
⋅
6
7
⋅
4
5
⋅
2
3
I
(
1
)
=
2
∏
k
=
1
n
2
k
2
k
+
1
{\displaystyle ={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n-4}{2n-3}}\cdot \cdots \cdot {\frac {6}{7}}\cdot {\frac {4}{5}}\cdot {\frac {2}{3}}I(1)=2\prod _{k=1}^{n}{\frac {2k}{2k+1}}}
sin
2
n
+
1
x
≤
sin
2
n
x
≤
sin
2
n
−
1
x
,
0
≤
x
≤
π
{\displaystyle \sin ^{2n+1}x\leq \sin ^{2n}x\leq \sin ^{2n-1}x,0\leq x\leq \pi }
⇒
I
(
2
n
+
1
)
≤
I
(
2
n
)
≤
I
(
2
n
−
1
)
{\displaystyle \Rightarrow I(2n+1)\leq I(2n)\leq I(2n-1)}
⇒
1
≤
I
(
2
n
)
I
(
2
n
+
1
)
≤
I
(
2
n
−
1
)
I
(
2
n
+
1
)
=
2
n
+
1
2
n
{\displaystyle \Rightarrow 1\leq {\frac {I(2n)}{I(2n+1)}}\leq {\frac {I(2n-1)}{I(2n+1)}}={\frac {2n+1}{2n}}}
, from above results.
Pelo teorema do confronto ,
⇒
lim
n
→
∞
I
(
2
n
)
I
(
2
n
+
1
)
=
1
{\displaystyle \Rightarrow \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}=1}
lim
n
→
∞
I
(
2
n
)
I
(
2
n
+
1
)
=
π
2
lim
n
→
∞
∏
k
=
1
n
(
2
k
−
1
2
k
⋅
2
k
+
1
2
k
)
=
1
{\displaystyle \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}={\frac {\pi }{2}}\lim _{n\rightarrow \infty }\prod _{k=1}^{n}\left({\frac {2k-1}{2k}}\cdot {\frac {2k+1}{2k}}\right)=1}
⇒
π
2
=
∏
k
=
1
∞
(
2
k
2
k
−
1
⋅
2
k
2
k
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
⋯
{\displaystyle \Rightarrow {\frac {\pi }{2}}=\prod _{k=1}^{\infty }\left({\frac {2k}{2k-1}}\cdot {\frac {2k}{2k+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \cdots }
Relação com a aproximação de Stirling
editar
A fórmula de Stirling para n ! estabelece que
n
!
=
2
π
n
(
n
e
)
n
[
1
+
O
(
1
n
)
]
{\displaystyle n!={\sqrt {2\pi n}}{\left({\frac {n}{e}}\right)}^{n}\left[1+O\left({\frac {1}{n}}\right)\right]}
.
Considere agora as aproximações finitas para o produto de Wallis, obtidas tomando os primeiros k termos no produto:
p
k
=
∏
n
=
1
k
2
n
2
n
−
1
2
n
2
n
+
1
{\displaystyle p_{k}=\prod _{n=1}^{k}{\frac {2n}{2n-1}}{\frac {2n}{2n+1}}}
pk pode ser expresso como
p
k
=
1
2
k
+
1
∏
n
=
1
k
(
2
n
)
4
[
(
2
n
)
(
2
n
−
1
)
]
2
=
1
2
k
+
1
⋅
2
4
k
(
k
!
)
4
[
(
2
k
)
!
]
2
{\displaystyle {\begin{aligned}p_{k}&={1 \over {2k+1}}\prod _{n=1}^{k}{\frac {(2n)^{4}}{[(2n)(2n-1)]^{2}}}\\&={1 \over {2k+1}}\cdot {{2^{4k}\,(k!)^{4}} \over {[(2k)!]^{2}}}\end{aligned}}}
Substituindo a aproximação de Stirling nesta expressão (para k ! e (2k )!) pode-se deduzir (após curto cálculo) que pk converge para π ⁄2 quando k → ∞.
A função zeta de Riemann e a função eta de Dirichlet podem ser difinidas:
ζ
(
s
)
=
∑
n
=
1
∞
1
n
s
,
ℜ
(
s
)
>
1
η
(
s
)
=
(
1
−
2
1
−
s
)
ζ
(
s
)
=
∑
n
=
1
∞
(
−
1
)
n
−
1
n
s
,
ℜ
(
s
)
>
0
{\displaystyle {\begin{aligned}\zeta (s)&=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}},\Re (s)>1\\\eta (s)&=(1-2^{1-s})\zeta (s)\\&=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n^{s}}},\Re (s)>0\end{aligned}}}
Aplicando uma transformação de Euler à última série, obtém-se o seguinte
η
(
s
)
=
1
2
+
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
[
1
n
s
−
1
(
n
+
1
)
s
]
,
ℜ
(
s
)
>
−
1
⇒
η
′
(
s
)
=
(
1
−
2
1
−
s
)
ζ
′
(
s
)
+
2
1
−
s
(
ln
2
)
ζ
(
s
)
=
−
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
[
ln
n
n
s
−
ln
(
n
+
1
)
(
n
+
1
)
s
]
,
ℜ
(
s
)
>
−
1
{\displaystyle {\begin{aligned}\eta (s)&={\frac {1}{2}}+{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {1}{n^{s}}}-{\frac {1}{(n+1)^{s}}}\right],\Re (s)>-1\\\Rightarrow \eta '(s)&=(1-2^{1-s})\zeta '(s)+2^{1-s}(\ln 2)\zeta (s)\\&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {\ln n}{n^{s}}}-{\frac {\ln(n+1)}{(n+1)^{s}}}\right],\Re (s)>-1\end{aligned}}}
⇒
η
′
(
0
)
=
−
ζ
′
(
0
)
−
ln
2
=
−
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
[
ln
n
−
ln
(
n
+
1
)
]
=
−
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
ln
n
n
+
1
=
−
1
2
(
ln
1
2
−
ln
2
3
+
ln
3
4
−
ln
4
5
+
ln
5
6
−
⋯
)
=
1
2
(
ln
2
1
+
ln
2
3
+
ln
4
3
+
ln
4
5
+
ln
6
5
+
⋯
)
=
1
2
ln
(
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
⋯
)
=
1
2
ln
π
2
⇒
ζ
′
(
0
)
=
−
1
2
ln
(
2
π
)
{\displaystyle {\begin{aligned}\Rightarrow \eta '(0)&=-\zeta '(0)-\ln 2=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[\ln n-\ln(n+1)\right]\\&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\ln {\frac {n}{n+1}}\\&=-{\frac {1}{2}}\left(\ln {\frac {1}{2}}-\ln {\frac {2}{3}}+\ln {\frac {3}{4}}-\ln {\frac {4}{5}}+\ln {\frac {5}{6}}-\cdots \right)\\&={\frac {1}{2}}\left(\ln {\frac {2}{1}}+\ln {\frac {2}{3}}+\ln {\frac {4}{3}}+\ln {\frac {4}{5}}+\ln {\frac {6}{5}}+\cdots \right)\\&={\frac {1}{2}}\ln \left({\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot \cdots \right)={\frac {1}{2}}\ln {\frac {\pi }{2}}\\\Rightarrow \zeta '(0)&=-{\frac {1}{2}}\ln \left(2\pi \right)\end{aligned}}}
Referências