Integral

operação matemática utilizada no cálculo
(Redirecionado de Função integrável)
 Nota: Para outros significados, veja Integral (desambiguação).

No cálculo, a integral[nota 1] é o análogo contínuo de uma soma discreta, usada para calcular áreas, volumes e suas generalizações. A integral foi desenvolvida originalmente para resolver certos problemas na matemática e na física, tais como determinar a área sob uma curva no plano cartesiano[1] e para determinar o deslocamento a partir da velocidade.

O processo de se calcular a integral de uma função é chamado de integração.[2] Juntamente com a diferenciação, a integração é uma das operações fundamentais do cálculo. A integral indefinida também é conhecida como antiderivada ou primitiva.

Diferentemente da noção associada de derivação, existem várias definições para a integração, todas elas visando a resolver alguns problemas conceituais relacionados a limites, continuidade e existência de certos processos utilizados na definição. Estas definições diferem porque existem funções que podem ser integradas segundo alguma definição, mas não podem segundo outra.[1]

Definição formal e notação

editar

Integral definida

editar
 
Calculando a área abaixo de uma curva (função f(x)).

Seja   uma função contínua definida no intervalo   A integral definida desta função é denotada comː[3]

Em linguagem matemática Em português
    é a integral da função   no intervalo entre   e     é o sinal da integral,   é o integrando e os pontos   e   são os limites (inferior e superior, respectivamente) de integração.
Onde     é uma função com domínio no espaço fechado [a,b] (com  ) e com imagem no conjunto dos números reais
 
Integral da função   sobre o intervalo   O valor da soma de Riemann truncada em   sub-intervalos é indicado por  

A ideia desta notação utilizando um S comprido é generalizar a noção de somatório.[4] Isto porque, intuitivamente, a integral de   sobre o intervalo   pode ser entendida como a soma de pequenos retângulos de base   tendendo a zero e altura   onde o produto   é a área deste retângulo. A soma de todas estas pequenas áreas (áreas infinitesimais), fornece a área entre a curva   e o eixo das abscissas. Mais precisamente, pode-se dizer que a integral acima é o valor limite da soma:[3]

 
O que é o integral (animação)
Em linguagem matemática Em português
  A integral de   no intervalo [a,b] é igual ao limite do somatório de cada um dos valores que a função f(x) assume, de 0 a n, multiplicados por   O que se espera é que quando n for muito grande o valor da soma acima se aproxime do valor da área abaixo da curva e, portanto, da integral de   no intervalo. Ou seja, que o limite esteja definido. A definição de integral aqui apresentada é chamada de soma de Riemann, mas há outras formas (equivalentes).
onde   Comprimento dos pequenos subintervalos nos quais se divide o intervalo [a,b]. Os extremos destes intervalos são os números  
onde   Equivale a um ponto num intervalo de   até   da função quando o valor do número de termos   tende a infinito ou equivalentemente quando o valor de   tende a 0,nesse caso a letra   define o enésimo termo de uma sequência infinita ligada aos valores que cada   assumirá.
onde   Valor ("altura") da função   quando x é igual ao ponto amostral   definido como um ponto que está no subintervalo   (podendo até mesmo ser um destes pontos extremos do subintervalo).

Uma integral definida pode ser própria ou imprópria, convergente ou divergente. Neste último caso, ela representa uma área infinita.

Integral indefinida

editar

A integral indefinida de   é a função (ou família de funções) definida porː[5][6]

 

em que   é uma constante indeterminada e   é uma antiderivada ou primitiva de   i.e.   A notação   é lida como: a integral de   em relação a  

É importante saber-se distinguir a integral definida da integral indefinida. Uma integral definida é um número, enquanto uma integral indefinida é uma função (ou uma família de funções). Como consideramos a integral como uma antiderivada, ou seja, o inverso da derivada, colocamos a constante   pois a derivada da constante resulta em   restando assim apenas a derivada de   que nada mais é do que a própria função   Logo, temos uma primitiva para cada valor de  .[7]

Teorema Fundamental do Cálculo

editar
 Ver artigo principal: Teorema fundamental do cálculo

O Teorema Fundamental do Cálculo estabelece que se   for contínua em   entãoː[8]

 

onde,   é uma antiderivada de  

De forma mais geral, este teorema afirma que se   é uma função contínua em um intervalo   então, para qualquer   temos que:

 

é uma antiderivada de   definida para todo   Ou seja:

 

Seja   é uma função não-negativa definida em um intervalo   e   Para cada ponto   a área   sob o gráfico de   restrita ao intervalo   é função de   i.e.   Neste caso, como consequência do Teorema Fundamental do Cálculo temos que a derivada da área   é igual a função   i.e.  .

Cálculo de integrais

editar

O teorema fundamental do cálculo fornece a principal ferramenta para o cálculo de integrais, pois ao conhecer uma função   cuja derivada é igual ao integrando  , obtém-se a integral, que é igual a   somada a uma constante   que independe de  . Tal constante é tradicionalmente adicionada após o término do cálculo da parte da integral que independe de  . Valendo-se também que a integral da soma de duas funções é a soma das respectivas integrais e que a integral de uma função multiplicada por uma constante é a constante que multiplica a integral da função, pode-se compilar uma lista de integrais relacionadas às funções mais fundamentais, como polinômios, funções trigonométricas, a função exponencial e a função logarítmica. Por exemplo, a derivada da função   é  . Portanto, como   é antiderivada de  , temos (omitindo a constante aditiva por conveniência) que:

 

Utilizando a propriedade de que a constante 2 em "2x" pode ser "retirada para fora" da integral, podemos escrever que:

 

Esse argumento pode ser repetido para outras potências de  , como  ,  , etc. Em geral, a função   tem como derivada  , sendo   um número real diferente de -1 (pois o denominador da fração   não pode ser nulo). Logo, temos a integral de qualquer potência de   (à exceção de  ):

 

Cálculo de integrais definidas

editar

Suponhamos uma função   e duas funções em escada   e   onde   para todo   Como as funções em escada possuem áreas definidas como retângulos, podemos achar funções em escada que formem retângulos com a bases cada vez mais estreitas, assim a soma das áreas dos retângulos se aproximam cada vez mais da área de  . Portanto, temos que

 

Onde   e   são os intervalos de integração. A base de cada retângulo de   e   é dada por

 

onde n é um número inteiro positivo que representa o número de retângulos, ou o número de subintervalos de   A área de cada retângulo é dada pelo produto entre sua base e sua altura. Portanto temos a área de cada retângulo:

 

onde   é um número inteiro positivo, que representa o subintervalo, ou seja,   O   nos dá a posição no eixo   de cada subintervalo.

Já que   e   são funções em escada, pela relação   temos que   Portanto

 

 

Isso significa que a integral de qualquer função   de área mensurável está entre a área de todos os retângulos superiores e retângulos inferiores. Portanto, a área de qualquer função   obedece à equação acima.

Pelas duas equações anteriores fica claro a razão da integral ser denotada com um   ele significa um intervalo (retângulo) infinitesimal, que surge quando   tende ao infinito.

Integral de polinômios

editar

Começando pela desigualdade[9][10]

 

Multiplicamos todos os termos por  

 

Fazendo   e   para   ficamos com

 

Portanto

 

Podemos, fazendo uso da propriedade aditiva das integrais,[9] generalizar para todo intervalo  

 

 

Que também pode ser escrito como:

 

Exemplo de integração de polinômios

editar

 

Pelas propriedades das integrais, a constante   fica fora da integral, portanto obtemos

 

Passo-a-Passo

editar

Fórmula das Primitivas

editar

 

Exemplo:

Cada membro da função é tratado como uma função em separado, para em seguida ser efetuada a soma entre eles e gerar outra função, a função na qual se substitui o valor de X pelos valores do intervalo. Feito isso, usa-se o teorema do cálculo para chegar ao valor da integral.

No intervalo (0,3)

  

Aqui usa-se a Fórmula da Primitiva em cada integral.

 

Gera-se a outra função, que será usada para substituir os valores do intervalo.

 

Para x = 0  

Para x = 3   

Aplicação do teorema fundamental do Cálculo

editar
 
Aproximações da integral de √x de 0 a 1, com  5 amostras à direita (acima) e  12 amostras à esquerda (abaixo)

  

Exemplos de integração

editar

Estas são as integrais de algumas das funções mais comuns:

  (Integral da função constante)   (Integral da função f(x) = x )

Por definição a barra   é utilizada com o significado da diferença  

Aplicações de integrais na Física

editar

Uma das mais famosas aplicações das integrais é no conceito físico de trabalho. Na Física, o trabalho é definido como a quantidade de energia transferida ao aplicar-se uma força produzindo um deslocamento. Matematicamente, o trabalho realizado por uma força constante é expresso pela equaçãoː[11]

 

Onde   é o trabalho (medido em Joules),   a força (medida em newtons) e   o deslocamento (medido em metros). Portanto, se temos uma força não constante, que varia em função da posição, temos que somar cada quantidade de trabalho produzida pela força em um deslocamento infinitesimal. Assim podemos integrar a força em relação ao deslocamentoː[12]

 

onde   é a força em função da posição, e   representa um deslocamento infinitesimal. Com base nas definições de integral, fica claro que esta integral representa a soma de cada trabalho exercido por uma força em deslocamentos infinitesimais.

Exemplo

editar

Suponhamos que para mover uma partícula se aplica uma força dada pela função[12]

 

onde   é a posição da partícula. Para calcularmos o trabalho realizado ao mover a partícula da posição   até à posição   integramos a função em relação à posição:

 

Integrais em coordenadas polares

editar

A integral pode ser generalizada para funções polares considerando funções polares em escada assim como na integral de funções em coordenadas cartesianas.[13] Definindo uma função polar   e duas funções polares em escada   e   que dividem a área sob   em   subintervalos abertos   tal que   temos cada subintervalo de   como um arco de circunferência de raio   e de ângulo  radianos (o mesmo para  ). Através da equação do arco de circunferência,[14] temos que a área de cada subintervalo de   é dada por

 

e de   por

 

Logo, as áreas sob   e   são dadas pelo somatório da área de cada subintervalo, o que é dado pelas integrais

 

 

Em que   representa um intervalo   infinitesimal. Por conseguinte temos as desigualdades

 

Logo

 

E esta é a definição da integral de uma função polar.

Definições de integral

editar

Para definições do processo de integração mais rigorosas veja os links abaixo:

Ver também

editar

Notas

  1. Em Portugal, a comunidade técnica utiliza integral como nome masculino. Por exemplo: o integral de f (x) em [a, b].

Referências

  1. a b Charles Doss, An Introduction to the Lebesgue Integral, [em linha]
  2. John Radford Young, The Elements of the Integral Calculus: With Its Applications to Geometry and to the Summation of Infinite Series. Intended for the Use of Mathematical Students in Schools and Universities (1839), Section I, On the Integration of Differential Expressions of a Single Variable, Chapter I, Fundamental Principles of Integration, p.1 [google books]
  3. a b Stewart (2002), p. 378.
  4. W3C (2006), Arabic mathematical notation (em inglês)
  5. Piskounov, Nikolai Semenovich; Cálculo Diferencial e Integral; Edições Lopes da Silva; 12ª edição, 2002; 2 vols.
  6. Stewart (2002), p. 401.
  7. Stewart, James. Cálculo - Volume 1. [S.l.: s.n.] 360 páginas 
  8. Howard, Anton (2009). Cálculo - Volume 1 8 ed. [S.l.]: Bookman. ISBN 9788560031634 
  9. a b Apostol, Tom. Cálculo, volume 1. [S.l.: s.n.] 
  10. «Prove a formula for b^p - a^p and a resulting inequality - Stumbling Robot». Stumbling Robot (em inglês). 10 de julho de 2015 
  11. Stewart, James. Cálculo - Volume 1. [S.l.: s.n.] 404 páginas 
  12. a b Stewart, James. Cálculo - Volume 1. [S.l.: s.n.] 405 páginas 
  13. Apostol, Tom. Cálculo - Volume 1. [S.l.: s.n.] 131 páginas 
  14. «Área do setor circular». Brasil Escola. Consultado em 16 de junho de 2018