Usuário(a):MGromov/Testes77
Página inicial: Testes
Edições completas: Mecânica estatística • Modelo Hodgkin-Huxley • Neurociência computacional • Modelo probabilístico para redes neurais • Teoria de campo médio • Modelo FitzHugh–Nagumo • Processo Lévy • Cadeias de Markov • Processo de Poisson • Galves–Löcherbach model • Stochastic chains with memory of variable length • Lesão do plexo braquial • Somatotopia • Função densidade • Modelos de grafos aleatórios exponenciais • Processo de Gram-Schmidt • Equação de Chapman–Kolmogorov • Predefinição:Processos estocásticos • Algoritmo de autovalores • Transição de fase • Hipótese do cérebro crítico • Critical brain hypothesis • Passeio aleatório • Plasticidade sináptica • Potencial pós-sináptico excitatório • Potencial pós-sináptico inibitório • Modelo de Morris-Lecar • Plexo braquial • Processo gaussiano • Campo aleatório de Markov • Eletroencefalografia • Modelo de Hindmarsh-Rose • Sistemas de partícula em interação • Medida de Gibbs • Nervo escapular dorsal • Nervo radial • Nervo peitoral lateral • Nervo musculocutâneo • Medida de Dirac • Nervo torácico longo • Sigma-álgebra • Nervo peitoral medial • Nervo ulnar • Potencial evocado • Estimulação magnética transcraniana repetitiva • Teorema de Donsker • Desigualdade de Boole • Codificação neural • Aprendizado de máquina • Independência condicional • Inferência estatística • Nervo subclávio • Nervo supraescapular • Nervo mediano • Nervo axilar • Movimento browniano geométrico • Caminho autoevitante • Tempo local • Nervo subescapular superior • Nervo toracodorsal • Nervo subscapular inferior • Caminho (teoria dos grafos) • Campo aleatório • Lei do logaritmo iterado
Edições em andamento: Nervo cutâneo medial do braço (N) • Nervo cutâneo medial do antebraço (N) • Cérebro estatístico (N) • Statistician brain • Distribuição de probabilidade condicional (N) • Esperança condicional (N) • Integral de Itō (N) • Martingale • Variação quadrática (N) • Processo Ornstein–Uhlenbeck • Ruído branco • Teoria ergódica • Avalanche neuronal (N) • Teoria da percolação (N) • Função totiente de Euler • Ruído neuronal (N) • Distribuição de Poisson • Córtex cerebral • Estímulo (fisiologia)
In probability theory, the law of the iterated logarithm describes the magnitude of the fluctuations of a random walk. The original statement of the law of the iterated logarithm is due to A. Y. Khinchin (1924).[1] Another statement was given by A.N. Kolmogorov in 1929.[2]
Statement
editarLet {Yn} be independent, identically distributed random variables with means zero and unit variances. Let Sn = Y1 + … + Yn. Then
where “log” is the natural logarithm, “lim sup” denotes the limit superior, and “a.s.” stands for “almost surely”.[3] [4]
Discussion
editarThe law of iterated logarithms operates “in between” the law of large numbers and the central limit theorem. There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums Sn, scaled by n−1, converge to zero, respectively in probability and almost surely:
On the other hand, the central limit theorem states that the sums Sn scaled by the factor n−½ converge in distribution to a standard normal distribution. By Kolmogorov's zero-one law, for any fixed M, the probability that the event occurs is 0 or 1. Then
so
An identical argument shows that
This implies that these quantities cannot converge almost surely. In fact, they cannot even converge in probability, which follows from the equality
and the fact that the random variables
are independent and both converge in distribution to
The law of the iterated logarithm provides the scaling factor where the two limits become different:
Thus, although the quantity is less than any predefined ε > 0 with probability approaching one, that quantity will nevertheless be dropping out of that interval infinitely often, and in fact will be visiting the neighborhoods of any point in the interval (-√2,√2) almost surely.
Generalizations and variants
editarThe law of the iterated logarithm (LIL) for a sum of independent and identically distributed (i.i.d.) random variables with zero mean and bounded increment dates back to Khinchin and Kolmogorov in the 1920s.
Since then, there has been a tremendous amount of work on the LIL for various kinds of dependent structures and for stochastic processes. Following is a small sample of notable developments.
Hartman-Wintner (1940) generalized LIL to random walks with increments with zero mean and finite variance.
Strassen (1964) studied LIL from the point of view of invariance principles.
Stout (1970) generalized the LIL to stationary ergodic martingales.
de Acosta (1983) gave a simple proof of Hartman-Wintner version of LIL.
Wittmann (1985) generalized Hartman-Wintner version of LIL to random walks satisfying milder conditions.
Vovk (1987) derived a version of LIL valid for a single chaotic sequence (Kolmogorov random sequence). This is notable as it is outside the realm of classical probability theory.
The law of iterated logarithm for pseudo-randomness
editarYongge Wang has shown that the law of the iterated logarithm holds for polynomial time pseudorandom sequences also.[5][6] Furthermore, the Java based software testing tool statistical testing techniques for pseudorandom generation is available for testing whether a randomness generator outputs sequences that satisfy the LIL.
See also
editarNotes
editar- ↑ A. Khinchine. "Über einen Satz der Wahrscheinlichkeitsrechnung", Fundamenta Mathematicae 6 (1924): pp. 9-20 (The author's name is shown here in an alternate transliteration.)
- ↑ A. Kolmogoroff. "Über das Gesetz des iterierten Logarithmus". Mathematische Annalen, 101: 126-135, 1929. (At the Göttinger DigitalisierungsZentrum web site)
- ↑ Leo Breiman. Probability. Original edition published by Addison-Wesley, 1968; reprinted by Society for Industrial and Applied Mathematics, 1992. (See Sections 3.9, 12.9, and 12.10; Theorem 3.52 specifically.)
- ↑ Varadhan, S. R. S. Stochastic processes. Courant Lecture Notes in Mathematics, 16. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2007.
- ↑ Y.Wang: The law of the iterated logarithm for p-random sequences. In: Proc. 11th IEEE Conference on Computational Complexity (CCC), pages 180-189. IEEE Computer Society Press, 1996. http://webpages.uncc.edu/yonwang/papers/CCC96.pdf
- ↑ Y.Wang: Randomness and Complexity. PhD Thesis, 1996. http://webpages.uncc.edu/yonwang/papers/thesis.pdf